Silicon Photonics Design

From design and simulation through to fabrication and testing, this hands-on introduction to silicon photonics engineering equips students with everything they need to begin creating foundry-ready designs.

Acquire practical understanding and experience
In-depth discussion of real-world issues and fabrication challenges ensures that students are fully equipped for future careers in industry, designing complex integrated systems-on-chip.

Cut design time and development cost
Step-by-step tutorials, straightforward examples, and illustrative source code fragments guide students through every aspect of the design process, and provide a practical framework for developing and refining key skills.

Industry-ready expertise
Providing both guidance on how a process design kit (PDK) is constructed and how to best utilize the types of PDKs currently available, this text will enable students to understand the design process for building even very complex photonic systems-on-chip.

Accompanied by additional online resources to support students, this is the perfect learning package for senior undergraduate and graduate students studying silicon photonics design, and academic and industrial researchers involved in the development and manufacture of new silicon photonics systems.

Lukas Chrostowski is Associate Professor of Electrical and Computer Engineering at the University of British Columbia. He is the Program Director of the NSERC CREATE Silicon Electronic-Photonic Integrated Circuits (Si-EPIC) training program, has been teaching silicon photonics courses and workshops since 2008, and has been awarded the Killiam Teaching Prize (2014).

Michael Hochberg is Director of Architecture and Strategy for Coriant Advanced Technology Group, based in Manhattan, NY, where he holds a visiting appointment at Columbia University. He has held faculty positions at the University of Washington, University of Delaware, and National University of Singapore, and was Director of the OpSIS foundry-access service. He has co-founded several startups, including Simulant and Luxtera and received a Presidential Early Career Award in Science and Engineering (2009).
“Photonics technology has created some of the most stunning achievements in human history, but the challenges of implementing even simple systems have made it the domain of a few specialized laboratories.

Silicon photonics enables the design of photonic systems in a much more streamlined manner, and the resulting designs can be fabricated by highly evolved silicon manufacturing facilities.

This book provides a complete guide, from physical principles of device operation through fabrication and testing, using real system examples. It gives non-specialists access to what may be the most important next step in information technology.”

Carver Mead, California Institute of Technology

“The book covers everything one would need to design, lay out, simulate, and fabricate an actual silicon chip for processing, detecting, and modulating light signals. The book’s focus on the practical side of chip implementation means that it is quite different, and frankly more useful, for chip designers than other photonics books. I highly recommend Silicon Photonics Design for both experienced designers and those wishing to get up-to-speed quickly in the nascent field of silicon photonics chip design.”

R. Jacob Baker, University of Nevada

“Silicon Photonics Design is an essential text for anyone with an interest in the application of silicon-based optical circuits, either in a commercial or academic research environment. The authors have captured all of the essential elements of silicon photonics while ensuring the text remains accessible. The inclusion of so many worked examples mixed with detailed fundamental physical descriptions is an approach that must be applauded.”

A. P. Knights, McMaster University
Silicon Photonics Design

LUKAS CHROSTOWSKI
University of British Columbia

MICHAEL HOCHBERG
Coriant Advanced Technology Group
Contents

List of contributors
xiii

Preface
xv

Part I Introduction

1
1 Fabless silicon photonics

1.1 Introduction

1.2 Silicon photonics: the next fabless semiconductor industry
1.2.1 Historical context – Photonics

1.3 Applications
1.3.1 Data communication

1.4 Technical challenges and the state of the art
1.4.1 Waveguides and passive components
1.4.2 Modulators
1.4.3 Photodetectors
1.4.4 Light sources
1.4.5 Approaches to photonic–electronic integration
1.5 Opportunities
1.5.1 Device engineering
1.5.2 Photonic system engineering
1.5.3 Tools and support infrastructure
1.5.4 Basic science
1.5.5 Process standardization and a history of MPW services

References
22
2 Modelling and design approaches

2.1 Optical waveguide mode solver

2.2 Wave propagation

2.2.1 3D FDTD

FDTD modelling procedure

2.2.2 2D FDTD

2.2.3 Additional propagation methods

2D FDTD with Effective Index Method

Beam Propagation Method (BPM)

Eigenmode Expansion Method (EME)

Coupled Mode Theory (CMT)

Transfer Matrix Method (TMM)

2.2.4 Passive optical components

2.3 Optoelectronic models

2.4 Microwave modelling

2.5 Thermal modelling

2.6 Photonic circuit modelling

2.7 Physical layout

2.8 Software tools integration

References

Part II Passive components

3 Optical materials and waveguides

3.1 Silicon-on-insulator

3.1.1 Silicon

Silicon – wavelength dependence

Silicon – temperature dependence

3.1.2 Silicon dioxide

3.2 Waveguides

3.2.1 Waveguide design

3.2.2 1D slab waveguide – analytic method

3.2.3 Numerical modelling of waveguides

3.2.4 1D slab – numerical

Convergence tests

Parameter sweep – slab thickness

3.2.5 Effective Index Method

3.2.6 Effective Index Method – analytic

3.2.7 Waveguide mode profiles – 2D calculations

3.2.8 Waveguide width – effective index

3.2.9 Wavelength dependence
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.10 Compact models for waveguides</td>
<td>66</td>
</tr>
<tr>
<td>3.2.11 Waveguide loss</td>
<td>69</td>
</tr>
<tr>
<td>3.3 Bent waveguides</td>
<td>69</td>
</tr>
<tr>
<td>3.3.1 3D FDTD bend simulations</td>
<td>70</td>
</tr>
<tr>
<td>3.3.2 Eigenmode bend simulations</td>
<td>73</td>
</tr>
<tr>
<td>3.4 Problems</td>
<td>75</td>
</tr>
<tr>
<td>3.5 Code listings</td>
<td>77</td>
</tr>
<tr>
<td>References</td>
<td>89</td>
</tr>
<tr>
<td>4 Fundamental building blocks</td>
<td>92</td>
</tr>
<tr>
<td>4.1 Directional couplers</td>
<td>92</td>
</tr>
<tr>
<td>4.1.1 Waveguide mode solver approach</td>
<td>93</td>
</tr>
<tr>
<td>Coupler-gap dependence</td>
<td>94</td>
</tr>
<tr>
<td>Coupler-length dependence</td>
<td>95</td>
</tr>
<tr>
<td>Wavelength dependence</td>
<td>95</td>
</tr>
<tr>
<td>4.1.2 Phase</td>
<td>96</td>
</tr>
<tr>
<td>4.1.3 Experimental data</td>
<td>99</td>
</tr>
<tr>
<td>4.1.4 FDTD modelling</td>
<td>102</td>
</tr>
<tr>
<td>FDTD versus mode solver</td>
<td>102</td>
</tr>
<tr>
<td>4.1.5 Sensitivity to fabrication</td>
<td>103</td>
</tr>
<tr>
<td>4.1.6 Strip waveguide directional couplers</td>
<td>105</td>
</tr>
<tr>
<td>4.1.7 Parasitic coupling</td>
<td>106</td>
</tr>
<tr>
<td>Delta beta coupling</td>
<td>108</td>
</tr>
<tr>
<td>4.2 Y-branch</td>
<td>110</td>
</tr>
<tr>
<td>4.3 Mach–Zehnder interferometer</td>
<td>113</td>
</tr>
<tr>
<td>4.4 Ring resonators</td>
<td>115</td>
</tr>
<tr>
<td>4.4.1 Optical transfer function</td>
<td>115</td>
</tr>
<tr>
<td>4.4.2 Ring resonator experimental results</td>
<td>117</td>
</tr>
<tr>
<td>4.5 Waveguide Bragg grating filters</td>
<td>117</td>
</tr>
<tr>
<td>4.5.1 Theory</td>
<td>117</td>
</tr>
<tr>
<td>Grating coupling coefficient</td>
<td>120</td>
</tr>
<tr>
<td>4.5.2 Design</td>
<td>120</td>
</tr>
<tr>
<td>Transfer Matrix Method</td>
<td>121</td>
</tr>
<tr>
<td>Grating physical structure design</td>
<td>123</td>
</tr>
<tr>
<td>Modelling gratings using FDTD</td>
<td>125</td>
</tr>
<tr>
<td>4.5.3 Experimental Bragg gratings</td>
<td>126</td>
</tr>
<tr>
<td>Strip waveguide gratings</td>
<td>127</td>
</tr>
<tr>
<td>Rib waveguide gratings</td>
<td>128</td>
</tr>
<tr>
<td>Grating period</td>
<td>129</td>
</tr>
<tr>
<td>4.5.4 Empirical models for fabricated gratings</td>
<td>130</td>
</tr>
<tr>
<td>Computation lithography models</td>
<td>134</td>
</tr>
<tr>
<td>Additional fabrication considerations</td>
<td>136</td>
</tr>
</tbody>
</table>
4.5.5 Spiral Bragg gratings 137
Thermal sensitivity 138
4.5.6 Phase-shifted Bragg gratings 138
4.5.7 Multi-period Bragg gratings 140
4.5.8 Grating-assisted contra-directional couplers 141
4.6 Problems 143
4.7 Code listings 144
References 159

5 Optical I/O 162
5.1 The challenge of optical coupling to silicon photonic chips 162
5.2 Grating coupler 163
5.2.1 Performance 164
5.2.2 Theory 165
5.2.3 Design methodology 168
Analytic grating coupler design 169
Design using 2D FDTD simulations 170
Results 172
Design parameters 173
Cladding and buried oxide 177
Compact design – focusing 179
Mask layout 180
3D simulation 181
5.2.4 Experimental results 181
5.3 Edge coupler 182
5.3.1 Nano-taper edge coupler 183
Mode overlap calculation approach 183
FDTD approach 187
5.3.2 Edge coupler with overlay waveguide 189
Eigenmode expansion method 189
5.4 Polarization 190
5.5 Problems 193
5.6 Code listings 193
References 211

Part III Active components 215

6 Modulators 217
6.1 Plasma dispersion effect 217
6.1.1 Silicon, carrier density dependence 217
6.2 pn-Junction phase shifter 218
6.2.1 pn-Junction carrier distribution 218
6.2.2 Optical phase response 221
7 Detectors

7.1 Performance parameters
 7.1.1 Responsivity
 7.1.2 Bandwidth
 Transit time
 RC response
 Dark current

7.2 Fabrication

7.3 Types of detectors
 7.3.1 Photoconductive detector
 7.3.2 PIN detector
 7.3.3 Avalanche detector
 Charge region design

7.4 Design considerations
 7.4.1 PIN junction orientation
 7.4.2 Detector geometry
 Detector length
 Detector width
 Detector height
 7.4.3 Contacts
 Contact material
 Contact geometry
 7.4.4 External load on the detector

7.5 Detector modelling
 7.5.1 3D FDTD optical simulations
 7.5.2 Electronic simulations

7.6 Problems
8 Lasers

8.1 External lasers 295
8.2 Laser modelling 296
8.3 Co-packaging 299
 8.3.1 Pre-made laser 299
 8.3.2 External cavity lasers 300
 8.3.3 Etched-pit embedded epitaxy 301
8.4 Hybrid silicon lasers 301
8.5 Monolithic lasers 303
 8.5.1 III–V Monolithic growth 303
 8.5.2 Germanium lasers 304
8.6 Alternative light sources 306
8.7 Problem 307
References 307

Part IV System design

9 Photonic circuit modelling 313
9.1 Need for photonic circuit modelling 313
9.2 Components for system design 314
9.3 Compact models 314
 9.3.1 Empirical or equivalent circuit models 316
 9.3.2 S-parameters 317
9.4 Directional coupler – compact model 318
 9.4.1 FDTD simulations 318
 9.4.2 FDTD S-parameters 320
 Directional coupler S-parameters 321
 9.4.3 Empirical model – polynomial 323
 9.4.4 S-parameter model passivity 324
 Passivity assessment 324
 Passivity enforcement 325
9.5 Ring modulator – circuit model 330
9.6 Grating coupler – S-parameters 330
 9.6.1 Grating coupler circuits 333
9.7 Code listings 333
References 348

10 Tools and techniques 349
10.1 Process design kit (PDK) 349
10.1.1 Fabrication process parameters 352
 Silicon thickness and etch 352
 GDS layer map 352
 Design rules 352
10.1.2 Library 352
10.1.3 Schematic capture 353
10.1.4 Circuit export 355
10.1.5 Schematic-driven layout 356
10.1.6 Design rule checking 360
10.1.7 Layout versus schematic 361
10.2 Mask layout 362
 10.2.1 Components 362
 10.2.2 Layout for electrical and optical testing 362
 10.2.3 Approaches for fast GDS layout 364
 10.2.4 Approaches for space-efficient GDS layout 364
References 366

11 Fabrication 368
11.1 Fabrication non-uniformity 368
 11.1.1 Lithography process contours 369
 11.1.2 Corner analysis 370
 11.1.3 On-chip non-uniformity, experimental results 372
 Ring resonators 373
 Grating couplers 377
11.2 Problems 379
References 380

12 Testing and packaging 381
12.1 Electrical and optical interfacing 381
 12.1.1 Optical interfaces 381
 Grating couplers 381
 Edge couplers 382
 Individual fibres 382
 Spot-size converter 383
 Fibre array 384
 Free-space coupling 385
 Fibre taper coupling 386
 12.1.2 Electrical interfaces 386
 Bond pads 386
 Probing 387
 Wire bonding 388
 Flip-chip bonding 388
12.2 Automated optical probe stations 389
xii Contents

12.2.1 Parts 391
 Sample stage 391
 Fibre array probe 392
 Electrical probes 393
 Microscopes 393
12.2.2 Software 393
12.2.3 Operation 394
 Loading and aligning a chip/wafer 395
 Aligning the fibre array 395
 Chip registration 396
 Automated device testing 396
12.2.4 Optical test equipment 397
12.3 Design for test 398
 12.3.1 Optical power budgets 400
 12.3.2 Layout considerations 401
 12.3.3 Design review and checklist 402
References 404
13 Silicon photonic system example 406
 13.1 Wavelength division multiplexed transmitter 406
 13.1.1 Ring-based WDM transmitter architectures 406
 13.1.2 Common-bus WDM transmitter 408
 13.1.3 Mod-Mux WDM transmitter 410
 13.1.4 Conclusion 411
References 412

Index 414
Contributors

Arghavan Arjmand
Lumerical Solutions, Inc., Canada

Tom Baehr-Jones
University of Delaware, USA

Robert Boeck
University of British Columbia, Canada

Chris Cone
Mentor Graphics Corporation, USA

Dan Deptuck
CMC Microsystems, Canada

Ran Ding
University of Delaware, USA

Jonas Flueckiger
University of British Columbia, Canada

Samantha Grist
University of British Columbia, Canada

Li He
University of Minnesota, USA

Nicolas A. F. Jaeger
University of British Columbia, Canada

Odile Liboiron-Ladouceur
McGill University, Canada

Charlie Lin
University of Delaware, USA

Amy Liu
Lumerical Solutions, Inc., Canada

Yang Liu
University of Delaware, USA

Dylan McGuire
Lumerical Solutions, Inc., Canada

Kyle Murray
University of British Columbia, Canada

Ari Novack
National University of Singapore, Singapore

James Pond
Lumerical Solutions, Inc., Canada

Wei Shi
University of British Columbia, Canada

Université de Laval, Canada

Matt Streshinsky
National University of Singapore, Singapore

Miguel Ángel Guillén Torres
University of British Columbia, Canada
List of contributors

Xu Wang
University of British Columbia, Canada
Lumerical Solutions, Inc., Canada

Han Yun
University of British Columbia, Canada

Yun Wang
University of British Columbia, Canada
Preface

The academic literature on silicon photonics is sufficiently rich that one might legitimately ask whether another book in this field is needed. Certainly all of the basic physics of waveguides, modulators, lasers, and photodetectors is covered in great detail in a series of landmark texts, from Yariv and Yeh [1] to Sze and Ng [2] to Siegman [3] and Snyder and Love [4]. More specifically integrated photonics theory is covered comprehensively in texts by Hunsberger [5], Coldren et al. [6], Kaminow et al. [7], etc. Several excellent volumes have come out in recent years describing the state of the field in silicon photonics, and discussing design considerations for a variety of devices [8–15].

So what are we aiming to add to this body of literature? Our aim is not to replicate any of the existing texts’ approach, but instead to provide a practical, examples-driven introduction to the practice of designing practical devices and systems. Our (admittedly ambitious) goal for this text is to do something similar to what Mead and Conway did with their landmark text on VLSI [16]: to treat the minimal possible level of device physics, and to focus primarily on the practical design considerations associated with using state-of-the-art silicon photonic foundry processes to build real, useful systems-on-chip.

In order to do this, we focus on a series of tutorials, using the tools that are in use in our own labs. That doesn’t mean that these tools are perfect, or that they are necessarily the best tools for any given application: they are just what we have used. Wherever there are alternative approaches, we highlight them and provide some context for why we choose to do things in a certain way. This is obviously an area where errors of omission are very easy to make: we welcome feedback and input.

The vendors of the commercial software we use provide in-kind access for educational institutions. For example, Lumerical Solutions software is available via the Commitment to University Education (CUE) program [17], which provides access to students in undergraduate and graduate classes. Similarly, Mentor Graphics has a higher education program [18] that provides software for classroom instruction and university research. The software has been available at the silicon photonics instructional workshops we have offered.

We also provide a cursory literature review in each chapter, as well as some exercises.
Silicon photonics – training programs

This book was developed in the context of training programs in silicon photonics led by the authors, specifically in the NSERC Si-EPIC Program (Canada) [19] and the OpSIS Workshops (United States) [20].

There are and have been several training opportunities in silicon photonics around the world, including the following.

- CMC Microsystems – University of British Columbia Silicon Nanophotonics Course (Canada) [21, 22], 2007–
- OpSIS Workshops (United States), 2011–2014
 OpSIS offered five-day intensive training workshops that have trained over 100 researchers and students in the design of silicon photonic systems.
- ePIXfab Europractice (Europe) [23]
- JSPS International Schooling on Si Photonics (Japan) [24], 2011
- Silicon Photonics Summer School (St. Andrews, UK) [25], 2011
- Summer School on Silicon Photonics (Peking University, China) [26], 2011–
- NSERC Silicon Electronic Photonics Integrated Circuits (Si-EPIC) Program (Canada) [19], 2012–

 This program offers four annual workshop/courses each of which includes a design-fabrication-test cycle. The workshops are on the topics of: (1) Passive silicon photonics, (2) Active silicon photonics, (3) CMOS electronics for photonics and (4) Systems Integration and Packaging
- plat4M Summer School Silicon Photonics (Ghent University, Ghent, Belgium) [27], 2014

Hochberg’s acknowledgements

I’d like to thank Lukas for all the work that he’s put into this volume over the past few years. Lukas is a truly gifted educator, and I’m constantly impressed by his ability to communicate complex ideas to students, both in a classroom and in writing. The overwhelming majority of the work that went into this book was his, with help from a number of the students in both his and my groups.

I’d like to thank both my and Lukas’ graduate students, and Dr. Tom Baehr-Jones. Individuals contributing to the book are acknowledged below.

I thank Gernot Pomrenke for his support of the OpSIS program over the past several years, and Mario Paniccia and Justin Rattner of Intel for their help in getting the program started. The people who have made OpSIS possible are too many to mention. In particular, Juan Rey, of Mentor Graphics, Klaus Engenhartd and Stan Kaveckis of Tektronix, Lukas Chrostowski of UBC, Andy Pomerene, Stewart Ocheltree and Steve Danziger of BAE Systems, Thierry Pinguet, Marek Tlalka and Chris Bergey of Luxtera and Andy Lim Eu-Jin, Jason Liow Tsung-Yang, and Patrick Lo Guo-Qiang of IME have all been immensely helpful. Lastly, I would like to thank Carver Mead for his time and for productive discussions.
Chrostowski’s acknowledgements

I would like to thank Michael and Tom Baehr-Jones for their vision and pioneering efforts in silicon photonics over the past 15 years. In particular, their leadership at establishing a multi-project wafer foundry service for silicon photonics is greatly appreciated by me, my students, and colleagues throughout the world. I have enjoyed learning about silicon photonics design from both Michael and his group, and I appreciate Michael’s willingness and efforts at educating silicon photonics designers and supporting the development of instructional workshops.

I am grateful for my colleague, Professor Nicolas Jaeger, with whom I have worked closely on both research and educational initiatives such as the silicon photonics workshops and the SiEPIC program. He has given me tremendous technical insight into guided-wave optics, microwave design, and high-speed testing, just to name a few topics.

I thank the numerous students and colleagues who contributed to this book, including those in Michael’s group, students at UBC, and students across Canada and around the world with whom I have interacted via collaborations and at silicon photonics workshops. Numerous topics described in this book are a result of questions asked by participants at workshops and the interesting discussions that ensued. I also thank the readers of this book who have provided feedback over the past two years, particularly Robert Boeck and Megan Chrostowski. I thank colleagues for insightful discussions and collaborations that led to topics discussed in this book, including: James Pond, Dylan McGuire, Jackson Klein, Todd Kleckner, and Amy Liu at Numerical Solutions; Chris Cone, John Ferguson, Angela Wong, and Kostas Adam at Mentor Graphics; Professors Shahriar Mirabbasi and Sudip Shekhar, and Han Yun at the University of British Columbia; Professors David Plant, Odile Liboiron-Ladouceur, and Lawrence Chen at McGill University; Professor Andrew Knights and Edgar Huante-Cerón at McMaster University; Professors Sophie Larochelle and Wei Shi at Laval University; Professor Dan Ratner and Dr. Richard Bojko at the University of Washington; Professor Jose Azana and Dr. Maurizio Burla at INRS; and Professors Joyce Poon and Mo Mojahedi, and Jan Nikas Caspers at the University of Toronto. I thank the foundries and services that have provided access to silicon photonic fabrication from which I have benefitted, including CMC Microsystems, Imec, IME, OpSIS, BAE, and the University of Washington. I thank NSERC for funding our research, and in particular for funding the Silicon Electronic Photonics Integrated Circuits (Si-EPIC) CREATE research training Program.

Finally, I thank my wife, children and parents for their love and support.

Contributions

We acknowledge the direct contributions to the content in this book: Ari Novack – photodetector theory and experimental data (Chapter 7); Wei Shi – ring resonator model (Section 4.4, pn-junction model (Section 6.2) and ring modulator model (6.3);
Yun Wang and Li He – fibre grating couplers (Section 5.2); Dylan McGuire – model development for the modulator and detector (Section 6.2.4, 7.5); Amy Liu – scripts for the modulator (Section 6.2.4); Arghavan Arjmand – scripts for the detector (Section 7.5); Jonas Flueckiger – photonic circuit circuit simulations (Chapter 9) and automated testing (Section 12.2); Miguel Guillén Ángel Torres – directional coupler FDTD S-parameters (Section 9.4); Robert Boeck – fabrication corner analysis (Section 11.1.2) and directional couplers (Section 4.1); Dan Deptuck and Odile Liboiron-Ladouceur – design for test and check-list (Section 12.3); Yang Liu and Ran Ding – WDM transmitter (Section 13.1); Matt Streshinsky – Mach–Zehnder modulators; Kyle Murray – parasitic coupling (Section 4.1.7); Chris Cone – process design kit; Samantha Grist – SEM images; Han Yun – test setup and diagrams; and Nicolas Jaeger and Dan Deptuck – co-development of the CMC-UBC Silicon Nanophotonics Fabrication workshops and Si-EPIC workshops which formed the basis for this text.

References

Preface