

	(1.00) 210 210
1-back task, 66–67	anterior cingulate cortex (ACC), 218–219
10,000-hour rule, 245	anterior cingulate gyrus (ACG), 125
10-year rule, 245	anticipation
	and AON, 25–27
abacus	and mirror neurons, 208–209
calculation studies, 126–135	and motor expertise, 197–205
definition of, 121	and the action observation network,
Abernethy, B., 202, 212, 215–217	212–215
Abreu, AM., 213–214	neurology of, 215-217
absolute pitch	AON. See action observation network
anatomy of, 80-82	arcuate fasciculus (AF), 242
neurology of, 77-82	auditory expertise
action observation network (AON)	and absolute pitch neurology, 77-82
and deception, 217–220	and tones, 82
and mirror neurons, 209–211	auditory system, 76
and temporal occlusion, 215–217	autism, 54
in motor expertise, 25–27	automaticity, 171
in sports, 212–215	•
adaptability	Baduk, 158-159
and motor expertise, 170–171	Baker, C., 59
in brain functioning, 16–19	Balser, N., 214
neurology, 183	Bangert, M., 190
aging	Bartlett, J., 150, 152–154
and olfactory expertise, 93	basal ganglia
functional changes with, 231–232	and the action observation network,
structural characteristics of, 232–234	213
Aglioti, S., 204-207, 213-214	in motor system, 175, 176
Ali, Muhammad, 223–225	Bilalić, M., 11, 27, 30, 66, 70, 149–151, 154,
Amedi, A., 84	236–237
amygdala	Binet, A., 107, 110
and blindness, 92	blindness
and gustative expertise, 88	and brain plasticity, 42-45
in olfactory system, 42	and olfactory expertise, 91–92
analytical/structural processing, 46	and tactile expertise, 83–85
anatomy	tactile ability and, 238–240
changes in board games, 158–160	board game expertise
of absolute pitch, 80–82	chess studies and, 136–139
of motor system, 171–177	knowledge structures in, 139-141
angular gyrus (AG)	memory and problem solving and,
and abacus calculations, 131	141–144
and calculation expertise, 121–122	neurology of, 145-160
•	

board game expertise (cont.)	and motor expertise, 187
problem solving in, 154–158	in motor system, 175–176
theories of, 144–145	Chase, W., 110–111, 118, 139–141,
bottom-up processing	161–162, 245
and visual expertise, 59–60	Chebat, DR., 239-240
definition of, 36	chess
Braille	and chunks, 139-142
and brain plasticity, 43-45	and size of caudate nucleus, 159-160
and tactile expertise, 238–239	hierarchical structure in, 162
gray matter changes in, 186	holistic processing in, 151–154
brain functioning	intelligence in, 236–237
and plasticity, 16–19	object recognition in, 146–148
development of, 19–21	choline, 232
neuroimaging techniques in, 15–16	chunking, 194
brain plasticity	chunking theory, 144–145, 194–195
and adaptability, 42–45	chunks
definition of, 16–19	and holistic processing, 47
in the motor system, 177	definition of, 10
Broca region	in board game expertise, 139-142
and abacus calculations, 132, 135	motor programs as, 25
and language, 103, 104	cognitive expertise
Brochet, F., 86	chess as an example of, 8–12, 100–102
Brown, Jim, 223–225, 226	definition of, 5
Bryan, W. L., 193–195	cognitive mechanisms
Buschhüter, D., 93	and LTM, 6
Busey, T., 72–74	and spatial expertise, 161–162
	expertise domains in, 5
calculation expertise	expertise research and, 27–30
abacus calculators and, 126-135	in motor expertise, 192–203
everyday expertise in, 120-122	in radiological expertise, 62–65
mental calculations and, 122-126	motor domains in, 13–15
Calvo-Merino, B., 209–211	perception as, 7, 12
Campitelli, G., 150	the same in different fields, 225–227
Cannonieri, G. C., 187	Cohen, L. G., 44
Carey, S., 56	color center, 38
Carlsen, Magnus, 225–226	composite face effect (CFE)
Carmody, D. P., 63–64	and board game expertise, 151–153
Castriota-Scanderbeg, A., 87–88	and Greebles, 57
caudate nucleus (CaudNuc)	and holistic processing, 48
and sports deception, 219	and the FFA, 51–53
in board game problem solving, 154–158	concurrent task, 128
size of in board game play, 158–160	condition, 145
central sulcus, 189–190	corpus callosum, 189
cerebellum	cortical expansion, 179
and AON, 26–27	corticocortical connections, 44
and expert memorizers, 115	corticospinal tract, 173

Index 291

creatine, 232 and the action observation network, Cross, E.S., 212 211 - 212definition of, 16 dancing, 209-212 electromyography (EMG), 178-179 de Groot, A., 9-10, 27, 136-139 Ellmore, T. M., 117 deception, 217-220 emotion, 117 decision making, 197-201 Engel, S., 68-71, 243 declarative memory, 105 Engvig, A., 232 deliberate practice environmentalist perspective, 247 theory of, 243-246 environments versus talent, 247-248 and brain development, 18-19 Desmurget, M., 174 and expertise, 2-3, 236-237 Diamond, R., 56 episodic memory diffusion tensor imaging (DTI) and calculation expertise, 124-125 definition of, 105 and adaptability, 183 definition of, 16 Ericsson, A., 110-114, 116, 118, 243-246 digit span, 130 everyday expertise, 5-6, 214-215 dopamine, 176 expert performance approach dorsal stream and expertise, 228 and musical notation, 76 and expertise research, 27-30 in auditory system, 40 expertise in visual system, 39 and aging, 229-234 dorsolateral frontal cortex, 81 brain accomodation in, 15-27 dorsolateral prefrontal cortex (DLPFC) cognitive mechanisms in, 5-15 and aging, 231 definition of, 2-5 double take of, 227-229 and expert memorizers, 116, 117, 120 road to, 234-235 and motor skill acquisition, 185 and sports deception, 219 transfer to new areas, 223-225 and the neurology of sports anticipation, expertise approach and expertise, 229 in board game problem solving, 154-157 and memory training, 109 dorsolateral prefrontal cortex (DLPFC) in cognitive neuroscience, 27-30 and auditory expertise, 82 research in, 228-234 and gustative expertise, 87-91 skill acquisition, 4 expertise domains, 3 and tactile expertise, 83-85 double take of expertise, 227-229 expertise hypothesis, 56–57 Dragamski, B., 186 expertise research, 27–30 experts, 3 ecological validity, 136 extrastriate cortex, 38-39 Einstellung mechanism, 10-13 eye movement tracking, 200-201 electroencephalography (EEG) and abacus calculations, 133-134 face perception and face perception, 53-54 and the FFA, 57-58 and fingerprint expertise, 72-74 development of, 19-20 and motor expertise viewing, 204 holistic processing in, 46-48 and tactile expertise, 84-85 hypotheses of, 56-57

292 Index

face perception (cont.) and expert memorizers, 119-120 importance of in everyday life, 45 and holistic processing, 152-154 individual differences in, 49-51 and olfactory expertise, 92 neural implementation of, 51-56 and radiological expertise, 66, 70 face specificity view, 28 and tactile expertise, 84 faces, 28-30 and visual expertise, 60 face-specificity hypothesis, 56, 58 and visual perception, 39 FFA. See fusiform face area development of, 19 find the best solution task, 136 fingerprint expertise, 71-74 Gamm, R., 123-126 fMRI. See functional magnetic resonance gamma-aminobutric acid (GABA), 183 imaging Gaser, C., 81 Fodor, J., 57 Gauthier, I., 57, 74-76 Frasnelli, J., 93 Gaye, Marvin, 77 frontal pole (FP), 117 general expertise module, 28 functional connectivity, 185 gestalt, 62 functional expansion gist, 62 Gladwell, M., 245-246 and neural implementation, 21-27 definition of, 19, 21 global processing of expert's brain activation, 22-23 and wine expertise, 88 in radiological expertise, 62-65 functional magnetic resonance imaging (fMRI) global-focal theory, 65 and abacus calculations, 133-135 Gobet, F., 11, 150, 236-237 and auditory expertise, 79-80 Goldstein, R., 87 and expert memorizers, 114 Gottfried, J., 92 and motor expertise, 183-185 gray matter and olfactory expertise, 92 and aging, 229, 232-234 and the action observation network, and expert memorizers, 117 213-214 and motor expertise, 186-187 definition of, 15 and olfaction, 94 of radiological expertise, 66-68 definition of, 16 functional neuroimaging techniques, in Heschl's gyrus, 81 15-16 Greebles, 57 functional reduction, 20-21 Grenouille, Jean-Baptiste (fictional functional reorganization, 19 character), 91, 94 fusiform face area (FFA) Gretzky, Wayne, 192-193 and board game expertise, 152-154 Grey, Jennifer, 46-47 and face perception, 51-56 Guardiola, Pep, 195 and musical notation, 75 gustative expertise, 85-91 and radiological expertise, 66, 69-71 gustatory system and the expertise approach, 28-30 anatomy of, 41-42 in perceptual brain, 38 and visual expertise, 59-61 as a brain module, 57-58 gyrus rectus, 94 fusiform gyri (FG) activation to cognitive stimuli, 21-23 half-move, 9 and aging, 232-234 Haller, S., 67

Hampstead, B.M., 231–232	and expert memorizers, 118–120
Hanakawa, T., 131–133, 135	and sports deception, 219
Harel, A., 59–61	inferior posterior lobe, 217
Harter, N., 193–195	inferior temporal cortex, 39
Hatano, G., 128–129	inferior temporal gyrus (IFG)
Heschl's gyrus	and expert memorizers, 118
and auditory expertise, 81	and tactile expertise, 86
location of, 40	inferior temporal gyrus (ITG), 124–125
hierarchical structure, 161–162	inferotemporal cortex
hippocampus	and radiological expertise, 68
and aging, 231	development of, 19
and blindness, 92	in perceptual brain, 38
and expert memorizers, 115, 120	insula
and expertise, 229	and olfactory expertise, 93
and gustative expertise, 88	and sports deception, 219
and long-term memory, 104	and the action observation network, 213
and spatial expertise, 162-165, 241	215
in olfactory system, 42	in gustatory system, 41
holistic processing	interference design, 128
and board game expertise, 151-154	intermediate-term memory, 111–112
and fingerprint expertise, 72-74	intraparietal sulcus (IPS)
and musical notation, 74–77	and abacus calculations, 132
and radiological expertise, 69–71	and calculation expertise, 121–122,
hypotheses of, 56–57	124–125
in face perception, 46–48	and motor expertise, 186
in radiological expertise, 62–65	and musical notation, 76
N170 and FFA in, 51–56	and tactile expertise, 85
Hu, Y., 116–117	and the action observation network,
Hyde, K. L., 242	210, 214, 215
	introspection, 137
incidental recognition paradigm, 197	inverted face effect (IFE)
individual differences	and face perception, 47–48
and practice, 234–235	and Greebles, 57
definition of, 234	and N170, 53-54
inferior frontal cortex, 181	and the FFA, 51–53
inferior frontal gyrus (IFG)	
and auditory expertise, 78	Jäncke, L., 159–160
and expert memorizers, 119–120	Jordan, Michael, 170–171, 192
and radiological expertise, 68	juggling, 186–187
and the action observation network,	
214, 215	Kalakoski, V., 162
inferior frontal sulcus (IFS), 124–125	Kalamangalam, G. P., 117
inferior parietal lobe (IPL)	Kanwisher, N., 52
and abacus calculations, 131, 132, 135	Karpov, Anatoly, 101,
and aging, 231	105, 108
and auditory expertise, 80	Keenan, J. P., 82

kinematic information, 24–27	M1
Kintsch, W., 112-114	anatomy of, 172–174
Klein, M. E., 77, 82	change in during skill acquisition,
knowledge structures	178–183
and chunking, 194–195	magnetic resonance imaging (MRI)
and the occlusion paradigm, 203	scanner, 178–183, 204
and the road to expertise, 234–235	magnetoencephalography (MEG)
definition of, 10	and adaptability, 183
in board game expertise, 139-144	and musical expertise, 191
Kondo, Y., 118–120	definition of, 15
Kravitz, D., 59	Maguire, E., 114–115, 117, 120, 162–165,
Krupinski, E., 64	240–241
Kundel, H., 62	McClure, S. M., 89
Kupers, R., 92	McLeod, P., 11, 236–237
	meaningful encoding, 112
Landi, S. M., 182	medial frontal cortex (MFC), 125
Langer, R., 154	medial temporal cortex (MTC), 70
lateral occipital complex (LOC)	memorizers
and radiological expertise, 69	functional implementation of, 114-117
and tactile expertise, 83-85	natural, 106–107
and visual expertise, 60	strategic, 107–109
definition of, 39	structural characteristics of, 117-118
Lee, YS., 82	training studies, 118–120
limbic system, 42	memory expertise
lingual gyrus (LG), 119–120	and long-term working memory,
liquid-crystal occluding goggles,	112–114
199–200	and randomization, 196
Liu, J., 50, 54–55	memorizer types, 105-109
longitudinal studies, 109–111	natural memorizers and, 106-107
long-term memory (LTM)	neurology of, 114-118
and calculation expertise, 124-126	skilled memory and, 111-112
and pattern recognition, 141-144	training for, 109–111
and the double take of expertise, 227	memory systems
and the method of loci, 108-109	and motor expertise, 195-197
and working memory, 103-104	neurology of, 102-105
definition of, 6, 103	mental calculations, 23-24
hierarchical structure of, 111-112	mental calculators, 122-126
knowledge structures in, 10	method of loci. See also visuo-spatial
longitudinal studies of, 110–111	imagery
of expert's brain activation, 23-24	and aging, 231, 232
pattern recognition in, 8	and emotion, 117
long-term working memory (LT-WM)	and expert memorizers, 114-116, 119-120
theory, 112–114	definition of, 108–109
LTM. See long-term memory	middle frontal gyrus (MFG)
Lundström, P., 214	and calculation expertise, 124-125
Luria, A., 107, 110	and expert memorizers, 118-120

and sports deception, 219	skill acquisition in, 178-185
and the neurology of sports	motor-evoked potential (MEP), 205-206
anticipation, 217	MT+, 38
middle temporal gyrus (MFG)	Müller, Thomas, 192–193
and motor expertise, 186	multivariate voxel pattern analysis
and tactile expertise, 86	(MVPA), 66–67
and the action observation	muscle memory
network, 215	and motor expertise, 171
and the neurology of sports	definition of, 25
anticipation, 217	music motor expertise, 188–192, 241–243
in board game problem	musical notation expertise, 74–77
solving, 154–157	MVPA. See multivariate voxel pattern
mild cognitive impairment, 231–232	analysis
mind/brain modules, 57–58	•
mind's ear, 79–80	N170
mind's eye	and face perception, 53-56
and abacus calculations, 129–130	and fingerprint expertise, 73–74
and expert memorizers, 120	natural memorizers, 106–107
and the method of loci, 109	nature versus nurture, 238–243
definition of, 9	neural scaffolding theory, 230
mirror neurons	neurology
and AON, 25-27	and olfactory expertise, 93-95
and measuring motor expertise, 25	board game problem solving, 154-158
and motor expertise, 207-209-212	expertise the same in different fields,
science of, 208–209	225–227
mnemotechnics, 107-109, 118-120, 231	in board game expertise, 145–160
mnemonic strategies, 108	memory systems, 102–105
modules, 28	nature versus nurture in, 238-243
motion center (MT+), 38	of adaptability to new environments, 183
motor expertise	of anticipation in sports, 215-217
anatomy of, 171–177	of deception in sports, 217–220
and functional adaptation, 170-171	of face perception, 51–56
and music, 188-192	of memory expertise, 114–118
as expertise domain, 13-15	of motor expertise, 204–220
cognitive mechanisms in, 192-203	of radiological expertise, 65–71
definition of, 5	of spatial expertise, 161–162
movement execution in, 14-15	the FFA as a brain module, 57–58
neural implementation of, 24–27	neuropsychological approach, 30
neurology of, 204–220	neurotransmitter, 176
studies of structural changes in, 186–187	Neymar Jr., 28–29
motor imagery, 179–182	Nodine, C., 62
motor program	non-declarative memory
and motor expertise, 172	and motor expertise, 172
definition of, 25	definition of, 105
motor system	novices
adaptability of, 177–178	and abacus calculations, 128-135
anatomy of, 171–177	and board game expertise, 136-139

novices (cont.)	own-age effect, 51
and global processing, 64	own-race effect, 50–51
and motor expertise, 204-205	
and object recognition, 146-148	P300,78
and radiological expertise, 67-68	Pantev, C., 191
and the action observation	paradox of expertise, 112
network, 212	parahippocampal gyrus (PHG)
as control in expertise research, 27-30	and calculation expertise, 125
numerical expertise. See calculation	and expert memorizers, 119–120
expertise	and long-term memory, 104
Nyberg, L., 231	and spatial expertise, 162–165
	development of, 19
Obama, Barack, 48	in board game problem solving,
object recognition, 146–148	154–157
occipital cortex	in pattern recognition, 149-151
and expert memorizers, 120	parahippocampal place area (PPA),
and olfactory expertise, 92	149–150
occipital face area (OFA), 54	parietal lobe, 77
occipital lobe	parieto-occipital junction (POJ), 103-104
and motor imagery, 181	Pascual-Leone, A., 178–179
and radiological expertise, 68	pattern recognition
and tactile expertise, 86	definition of, 8
definition of, 37	in board game expertise, 141–144,
in perceptual brain, 38	149–151
occipito-temporal junction (OTJ)	in motor expertise, 197-201
and calculation expertise, 124–125	percept, 36
and object recognition, 147–148	perception
occlusion paradigm	adaptability of, 42–45
and motor expertise, 13–14	and reality, 36
in motor expertise, 201–203	perception anatomy
olfactory bulb	auditory system, 39–37
and olfactory expertise, 91–92, 93, 94	gustatory and olfactory systems, 41–42
in olfactory system, 42	tactile system, 41
olfactory expertise, 91–95, 232–234	visual system, 37–39
olfactory sulcus, 94	perceptual expertise
olfactory system anatomy, 41–42	and action in sports, 209
Olsson, CI., 214	and musical notation, 74–77
operculum, 41	chunks/knowledge structures in, 10
orbitofrontal cortex (OFC)	definition of, 4
and aging, 232–234	fingerprint expertise and, 71–74
and expert memorizers, 116, 118	radiology as an example of, 7, 12, 34–35,
and gustative expertise, 87–91	65–71
and olfactory expertise, 92–94	perfect pitch, 77–82
and the gustatory system, 41–42	Perfume (novel), 91, 94
in perceptual brain, 38	Pesenti, M., 123–126
Outliers (book), 245–246	photographic memory, 106

piriform cortex	and musical notation, 76
and aging, 233	and sports deception, 219
and olfactory expertise, 94	and the action observation network,
in olfactory system, 42	210, 215
piriform gyrus, 94	and the neurology of sports anticipation,
planum polare (PP), 82	217
planum temporale (PT), 81	in board game problem solving, 154-157
Plassmann, H., 89–90	in motor system, 172-174, 181
ply, 9	Price, C., 68
point light manipulation, 216–217	primary auditory area (A1), 39-37
Pollack, S. D., 51	primary gustatory area, 41
positron emission tomography (PET)	primary motor cortex (M1)
and auditory expertise, 78	anatomy of, 172-174
and calculation expertise, 124-126	change in during skill acquisition,
definition of, 16	178–183
postcentral gyrus	primary olfactory cortex
in perceptual brain, 38	and blindness, 92
in the somatosensory system, 41	in olfactory system, 42
posterior cingulate cortex (PCC), 219	primary somatosensory cortex (S1), 41
posterior cingulate gyrus (pCG), 68	primary visual area (V1)
posterior dorsolateral prefrnotal cortex	and tactile expertise, 84
(pDLPFC), 79-80	and visual expertise, 60
posterior middle temporal gyrus (pMTG)	definition of, 37, 38
and object recognition, 147–148	procedural memory
board game problem solving, 154–157	and motor expertise, 172
in pattern recognition, 149-151	definition of, 105
posterior middle temporal lobe (pMTL),	production, 145
26–27	production system model, 144–145
posterior parietal cortex, 39	prosopagnosia, 49
posterior superior temporal sulcus	pruning, 20, 23, 159
and AON, 210	
and emotions, 54	radiological expertise
practice	and expertise in other fields, 226
and expertise, 234–235	cognitive mechanisms in, 62-65
deliberate practice, 243–248	neurology of, 65–71
precentral gyrus, 190	pattern recognition in, 142
precentral sulcus (PCS), 124–125	Radue, E., 67
precuneus (PCun)	randomization paradigm, 196
and expert memorizers, 119–120	Raz, A., 115–117
and long-term memory, 104	recall task
in board game problem solving, 154-158	and board game expertise, 139
in pattern recognition, 149–150	and motor expertise, 195–196
prefrontal cortex, 229	in pattern recognition, 150
premotor cortex (PM)	relative pitch, 77–80
and abacus calculations, 130–133, 135	Renier, L., 92
and expert memorizers, 117	retinotopic map, 37

retrieval cue, 103	Simon, H., 140-141, 245
retrieval structures	skill acquisition, 178-185
and hierarchical knowledge, 111-112	skill acquisition approach to expertise, 4
and LTM, 111	194, 236–237
and LT-WM, 113	skilled memory theory, 111-112
retrosplenial cortex (RSC)	smell, 42
and aging, 231	Smith, Will, 48
and expert memorizers, 115, 120	social network, 220
and long-term memory, 104	somatosensory cortex
and spatial expertise, 163	adaptability of, 177-178
in board game problem solving, 154-157	and musical expertise, 191
in pattern recognition, 149-151	and musical notation, 76
Richler, J., 50	and the action observation
Rizzolatti, G., 208-209	network, 213
Rombaux, P., 92	somatosensory perception, 41
Royet, JP., 94–95, 232–234	Sommer, W., 55–56
	somatotopic map, 41
Saariluoma, P., 162	spatial expertise
satisfaction of search (SOS), 12	cognitive mechanisms in, 161–162
schemas	nature versus nurture in, 240–241
and chunking, 194	neurology, 162–165
in memory, 65, 113	spatial occlusion, 201
Schlaug, G., 79–82, 189–192, 242	speedup of encoding and retrieval, 112
scripts, 194	sports, 212–215
secondary gustatory cortex, 41	Sports Gene, The (book), 246
secondary motor cortex, 173	storytelling strategy, 116–117
secondary olfactory cortices	strategic memorizers, 107–109
and blindness, 92	striate cortex, 37
and olfactory expertise, 94	striatum
in olfactory system, 42	and basketball expertise, 187
secondary somatosensory area (S2), 41	definition of, 184
semantic memory, 105	Stromeyer, C., III, 107
sensation, 36	structural neuroimaging techniques, 16
senses	superior longitudinal fasciculus, 160
and perception, 36–37	superior memory. See memory
auditory system, 39–37	expertise
gustatory and olfactory systems, 41-42	superior parietal lobe (SPL)
tactile system, 41	and abacus calculations, 130–133, 135
visual system, 37–39	and the action observation network,
sensory homonucleus, 41	210, 214, 215
Seubert, J., 93	and the neurology of sports
shogi, 154–158	anticipation, 217
short-term memory (STM)	superior temporal gyrus (STG)
and motor expertise, 195	and auditory expertise, 78, 80, 82
and working memory model, 103–104	and expert memorizers, 115
definition of, 103	location of, 40

Index 299

superior temporal sulcus (STS) temporal occlusion, 201, 215-217 and auditory expertise, 78, 80, 82 thalamus and face perception, 54 in motor system, 175 and the action observation in olfactory system, 42 network, 210 Thatcher, Margaret, 47-48 and the neurology of sports theory of biological limits, 247 Thicke, Robin, 77 anticipation, 217 supplementary motor area think aloud technique and motor skill acquisition, 185, 187 and board game expertise, 137-138 in board game problem solving, in cognitive expertise, 9 154-157 Thompson, P., 47-48 in motor system, 172-174 time paradox in sports, 198-201 supplementary motor area (SMA) tone recognition, 82 and motor imagery, 181 tonotopic maps, 40 and the action observation network, top-down processing 214 and gustative expertise, 85-91 supramarginal gyrus (SMG) and pattern recognition, 142 and calculation expertise, 124-125 and tactile expertise, 83-85 and musical notation, 76 definition of, 37 and object recognition, 147-148 training studies and abacus calculations, 134-135 and working memory, 103 in pattern recognition, 150 and aging, 231-232 Süskind, P., 91 definition of, 109 Sylvian fissure (SF), 76 expert memorizer, 118-120 transcranial direct current stimulation tactile experience hypothesis, 238-240 (tDCS), 176 tactile expertise, 83-85, 238-240 transcranial magnetic stimulation Talent Code (book), 246 (TMS) Talent Is Overrated (book), 246 and brain plasticity, 43-45 talent perspective, 247–248 and motor expertise, 205-206 Tanaka, S., 130-131, 135 and motor expertise viewing, 204 taxi driver expertise and musical notation, 191 nature versus nurture in, 240-241 in motor system, 173, 178-179, 183 spatial expertise, 161-165 transfer, 83 telegraphy, 193-195 two-stage theory, 65 template theory (TT), 145 typing expertise, 187 templates and chunking, 194 use it or lose it principle, 164, 182–183 and template theory, 145 in board game expertise, 141-144 temporal lobe and tactile expertise, 84

and visual expertise, 60

definition of, 37

Valenzuela, M. J., 232

Vanderkolk, J., 72-74

van Kooten, L. A. J., 54

and AON, 26

and radiological expertise, 66

of expert's brain activation, 22-23

auditory areas of the, 39-37

development of, 19

300 Index

ventral stream in auditory system, 40 in visual system, 39 residing in temporal lobe, 23 ventrolateral prefrontal cortex (VFPC) and abacus calculations, 131-133 and working memory, 103 verbal information, 103 verbal protocols, 137 visuo-spatial imagery. See also method of loci and abacus calculations, 24, 126-135 and right side of the brain, 227–228 and the hippocampus, 162-165 and working memory, 103 visual cortex adaptive nature of, 92–93 and olfactory expertise, 92 visual deprivation hypothesis, 238-240 visual expertise and fingerprint expertise, 71-74 and musical notation, 74-77 and radiological expertise, 65-71 brain areas affecting, 59-61

face perception, 45–58 importance of in everyday life, 45 visual system, 85–91 voxel-based morphometry (VBM), 16, 183

Wan, X., 154-158 Ward, P., 197 Wenzel, U., 187 what pathway, 39 where/how pathway, 39 white matter, 16 Williams, A. M., 197 Williams, Pharrell, 77 Williams, Serena, 171-172, 225-226 Williams, Ted, 198-199, 235 wine selection expertise, 85-91 Wiseman, R., 85 Wolfe, J., 64 Wong, M., 238-239 Wong, Y., 74-76 Woollett, K., 241 working memory (WM), 103-104 Wright, M., 212, 215-217, 218-219

Zatorre, R., 78, 81-82