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The basic ideas of thermodynamics and
statistical mechanics

1.1 From atoms to thermodynamics

Imagine a box, a cube 10 cm on each edge, with 1022 atoms of helium gas

in it. The atoms share among them some total energy U; say, 2 × 106 ergs,

which cannot change because the box is isolated from the rest of the

world. Inside the box the atoms fly around, banging into each other or

the walls, exchanging energy and momentum. If there is only one atom

in the box, and we know how it started out, we might imagine being

able to calculate its precise trajectory for a while, predicting just where

it would end up at some later time. If there are twenty atoms, the same

job becomes horribly more complicated. With 1022 atoms it is obviously

hopeless. Moreover, according to the laws of quantum mechanics,

it would not be possible even in principle. If we knew precisely where

the atoms were at some time, we could have no idea of how fast they were

moving, according to the uncertainty principle. Obviously, a very short

time after we start things off, there is not much we can say about what’s

going on inside the box.

Nevertheless, it is possible to make some very precise statements

about the properties of the gas in the box, especially if we allow some

time to pass after we start it off. For example, the gas will have some

pressure, P, and some temperature, T, and, given the information we

already have, these can be predicted with extreme accuracy and confidence.

Temperature and pressure are macroscopic or thermodynamic quantities.

The problem before us in this section is to describe the connection bet-

ween these (predictable) thermodynamic quantities and the (unpredictable)

microscopic quantities that somehow give rise to them.

The trick, as it usually is in physics, is to ask the right question. We

cannot, even in principle, say exactly what is going on inside the box some
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time after we isolate it, but we can, in principle at least, say how many

possibilities there are. Let us focus our attention on that question.

We have a box of volume V (103 cm3 in our example) containing atoms

of some kind (1022 atoms of helium) with total energy U (2 × 106 ergs).

Let us call the number of things that can possibly happen Γ. That is, there
are Γ ways in which N atoms can divide among them energy U while

remaining in volume V. (It is not obvious that such a number exists,

but it does. We shall see shortly just what we mean by “the number of

possible things that can happen”.)

If we change U, V or N, the number Γ will change. In other words, Γ is a

function of the numbers U, V and N. It will turn out to be convenient

to deal not with the (usually gigantic) number Γ but rather with its

(more manageable) natural logarithm (written as “log” rather than “ln”

throughout this book). We define the quantity S,

S ¼ kB log Γ (1.1.1)

where kB here, called Boltzmann’s constant, will be assigned a value later.

The quantity S is called the entropy. Since Γ is a function of U, V and N,

S is also a function of those variables. If we add more energy to the box,

it seems clear that the number of ways of dividing the (larger) energy

among the same number of particles must increase. Thus Γ, and hence S,

should be a monotonic function of energy at a given V and N. If we knew

the functional form we could therefore solve uniquely for U as a function

of S, V and N. Let us write

U ¼ U(S, V, N) (1.1.2)

We are here supposed to visualize an equation with only U on the

left-hand side, and on the right a mathematical form that involves, aside

from constants, only the variables S, V and N (not U). Equation (1.1.2)

means that any change in U comes about by means of changes of its three

variables. Moreover, any small change can be constructed by changing

the variables one at a time. We express that fact by writing

dU ¼ ∂U
∂S

� �
V,N

dSþ ∂U
∂V

� �
S,N

dV þ ∂U
∂N

� �
S,V

dN ð1:1:3Þ

The coefficients of dS, dV and dN are called partial derivatives. They are,

in effect, defined by this equation. Each partial derivative expresses
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a precisely defined operation, both physically and mathematically.

For example, (∂U/∂S)V,N means how much does the energy of the system

change if we change the entropy by dS while holding V and N fixed?

Mathematically, we are to calculate the derivative of U with respect to S

while treating V and N as constants.

Example 1.1.1

Find (∂U/∂S)V,N for an ideal gas of atoms.

Solution.

For an ideal gas, Eq. (1.1.2) has the form

U ¼ 3

2
NkB

N

V

� �2=3

exp
S

ð3=2ÞNkB � s0

� �
ð1:1:4Þ

where kB is Boltzmann’s constant and s0 is also a constant. So

∂U
∂S

� �
V,N

¼ N

V

� �2=3

exp
S

ð3=2ÞNkB � s0

� �
¼ U

ð3=2ÞNkB

Equilibrium thermodynamics is largely an expression of the fact that

the energy of a body is a unique function of S and (generally) one or two

other variables such as V and N. The consequences of this fact are in turn

expressed by partial derivatives. The mathematics of partial derivatives is

the language of equilibrium thermodynamics.

Of the many partial derivatives that will show up in the course of our

work, a few have particular significance and are therefore given special

names. Among those chosen few are the three coefficients of the differen-

tials in Eq. (1.1.3). We define

T ¼ ∂U
∂S

� �
V,N

ð1:1:5Þ

where T is called the absolute thermodynamic temperature;

P ¼ � ∂U
∂V

� �
S,N

ð1:1:6Þ

where P is called the pressure; and

μ ¼ ∂U
∂N

� �
S,V

ð1:1:7Þ

where μ is called the chemical potential.
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Example 1.1.2

For the system obeying Eq. (1.1.4) find the pressure as a function of T,

V and N.

Solution.

From Example (1.1.1) we have

T ¼ ∂U
∂S

� �
V,N

¼ U

ð3=2ÞNkB
and also

P ¼ � ∂U
∂V

� �
S,N

¼ þ 2U

3V

(since U / V �2/3 with everything else held constant). Upon elimin-

ating U between these two equations, we have

P ¼ NkBT

V
ð1:1:8Þ

The relation involvingP, T,V andN for any system is called the equation

of state. Equation (1.1.8) is the equation of state of the ideal gas.

There is a technical point to take care of concerning units. The constant

kB is related to the temperature by

T ¼ ∂U
∂S

¼ 1

kB

∂U
∂log Γ

¼ Γ
kB

∂U
∂Γ

Thus kBT has the units of energy. The choice of a value for kB fixes the

absolute temperature scale. We shall choose to express T in kelvins (K),

which is accomplished by setting

kB ¼ 1:38 × 10�23 joules=kelvin
¼ 1:38 × 10�16 ergs=kelvin

On the Kelvin scale, zero is the absolute zero of temperature. Water, ice

and water vapor coexist at the unique temperature of 273.15 K, and the

normal boiling point of water is exactly 100 K higher. Room temperature

(of a rather warm room) is roughly 300 K.

The connection we set out to make has now been made. Starting from

a purely microscopic idea – the number Γ of ways that N atoms could

divide the available energy, we have shown what is meant by purely

macroscopic ideas such as temperature and pressure. We have, of course,
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not yet shown that the peculiar entities that appear in Eqs. (1.1.5)

and (1.1.6) behave as we intuitively feel temperature and pressure

ought to behave. That will come shortly. It is unlikely that you have

any intuitive feel for chemical potential. We shall try to develop that

intuition later.

Problem 1.1

For a system obeying Eq. (1.1.4), find the following functions:

S ¼ S(T, V)
S ¼ S(T, P)

Problem 1.2

For an ideal gas of large N and U, obeying Eq. (1.1.4), we wish to

carry out the following operation. We add one atom with zero

energy so that the gas has the same amount of energy but N þ 1

atoms. We then wish to extract enough energy that the entropy of

the system is the same as it was before the atom was added. How

much energy must be extracted?

1.2 Counting quantum states

We have seen that, in order to connect thermodynamics to the micro-

scopic world of atoms and molecules, the question we must answer is not

what the atoms are doing, but rather, how many things can they be doing?

In this section, we shall see exactly what is meant by that question and by

its answer, the number Γ, in the case of the perfect gas.

The perfect gas is one whose atoms exert no forces on one another. It is

a good approximation to the behavior of real matter at low densities and

high temperatures. In those conditions it becomes the same as the ideal

gas of Example 1.1.1. Our interest in it now, however, is as a model, an

idealization that will help us form more concrete ideas about how to

describe the microscopic behavior of matter.

To begin with, we consider the simpler problem of a single atom

confined in an otherwise empty box in the form of a cube whose dimen-

sion is L on each edge. The energy of the atom is simply its kinetic energy,

which is related to its momentum by

ε ¼ p2

2m
ð1:2:1Þ

1.2 Counting quantum states 5

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-08011-9 - Thermal Physics: Energy and Entropy
David Goodstein
Excerpt
More information

http://www.cambridge.org/9781107080119
http://www.cambridge.org
http://www.cambridge.org


where ε is the energy, m the mass and p
!

the momentum is a vector with

x, y and z components, so that

p2 ¼ p2x þ p2y þ p2z ð1:2:2Þ
In classical mechanics each component of p

!
is a continuous variable

that can take on any positive or negative value. Thus even for the simple

problem of a single atom with fixed energy, there would be no answer to

the question of how many ways the atom could use up the energy it has.

For any finite ε there are an infinite (i.e. uncountable) number of choices

of px, py and pz. In quantum mechanics, however, the components of the

momentum are quantized and are given in our case by

px ¼ nx p0
py ¼ ny p0
pz ¼ nz p0

ð1:2:3Þ

where nx, ny and nz are numbers (called quantum numbers), and p0 is the

quantum unit of momentum in our cubical box. The permissible values of

nx, ny and nz and the size of p0 depend on how we choose to describe the

walls of the box.

One way to describe the walls is simply to say they are impenetrable.

Thus an atom hitting one of these walls bounces off, conserving energy.

An impenetrable wall is sketched in Fig. 1.1. With this specification, each

of the ns can be any positive integer,

nx, ny, nz ¼ 1, 2, 3, . . . (impenetrable walls)

and p0 is given by

p0 ¼ h/(2L) (impenetrable walls)

where h is Planck’s constant,

h ¼ 6.62517 × 10�27 erg s

(We often use the symbol ħ ¼ h/(2π) ¼ 1.05 × 10�27 erg s.)

All of the possible states of the atom in our box can be enumerated

by assigning positive integers to nx, ny and nz. Although our description of

the problem is simple and straightforward, this set of solutions has some

bizarre aspects, even aside from the fact that ε and p
!
are quantized. For one

thing, it is impossible for the atom to have zero kinetic energy. The lowest

value that the energy can have, say εm, occurs when nx¼ ny¼ nz¼ 1, so that

εm ¼ 3
ðh=ð2LÞÞ2

2m
¼ 3

8

h2

mL2
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This quantity is called the zero-point energy, and it always occurs

in quantum mechanics when a particle is confined in space. Even more

peculiar, the components of momentum have only positive values. It’s

hard to see how we can make use of this description to discuss an atom

that can fly either to the left or the right.

There is anotherway of describing thewalls that denotes states that do not

have these strange quirks. In this description, when the atom hits the wall,

it does not bounce off of it at all. Instead it vanishes into the wall, reappear-

ing with the same energy and momentum at the opposite wall, as sketched

in Fig. 1.2. In other words it behaves as if the left-hand end of the box always

begins just where the right-hand end stops, and there are no walls at all.

A problem described this way is said to have periodic boundary conditions.

Strange though such a box may seem, it has all the necessary properties

for our purposes. Imagine it to have N atoms in it with total energy U.

That makes it suitable for thermodynamic analysis. For periodic boundary

conditions, the unit of momentum is

p0 ¼ h/L (periodic boundary conditions) (1.2.4)

and the allowed values of quantum numbers are

nx, ny, nz ¼ 0, ±1, ±2, . . . (periodic boundary conditions) (1.2.5)

Figure 1.1 An impenetrable wall.
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We thus have, in this case, a state of zero energy, and both positive and

negative components of momentum. Because of these nice properties, we

will always use periodic boundary conditions. We are now in a position to

see by example, at least for the simple case of one atom in a box, what

exactly is meant by the number Γ.

Example 1.2.1

Find Γ for one atom in the box we have been discussing, if the atom

has 3 units of energy.

Solution.

The quantum unit of energy in the box is

ε0 ¼ p2/(2m) ¼ h2/
�
2mL2

�
(1.2.6)

Using Eqs. (1.2.1), (1.2.2) and (1.2.3), the possible energies of an

atom in the box may be written as

ε ¼ ε0 n2x þ n2y þ n2z

� 	
ð1:2:7Þ

The statement that the atom has 3 units of energy means

n2x þ n2y þ n2z ¼ 3

Γ is the number of choices of (nx, ny, nz) that satisfy this last equation.

The choices that work are all possible combinations of nx ¼ ±1, ny ¼
±1 and nz ¼ ±1. There are 23 ¼ 8 possible sets that work, so in this

simple case Γ ¼ 8.

Problem 1.3

One atom in the same box has energy ε ¼ Bε0. Find Γ if B ¼ 0, and if

B ¼ 1 or 2 or 4. Find Γ if B ¼ 25.

Figure 1.2 Periodic boundary conditions.
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We do not need thermodynamics to discuss the behavior of one atom in

a box. But we do need it if there are many atoms. The problem we want to

analyze, the perfect gas, is formulated as follows. In the box we have been

describing there are N atoms. The possible states of each atom, however,

are those it would have if it were alone in the box. In other words, each

atom has kinetic energy only. The kinetic energy of each atom is quant-

ized, and its possible values are given by Eq. (1.2.7) with nx, ny and nz each

equal to zero or any positive or negative integer. Thus the quantum

mechanical description of the problem is no different from what it was

before, but the problem of counting how many ways a given amount of

energy can be allocated has become dramatically more difficult.

Before going on with this discussion, we must come to grips with a

purely linguistic difficulty. The problem is that the word state simply has

too many uses. We speak of the state of a single atom, the microscopic

state of a gas of atoms, the macroscopic state of a gas (i.e. its temperature

and pressure), the liquid state, the solid state; and, although Philadelphia

is in the Commonwealth of Pennsylvania, San Francisco is in the state of

California – and you may now be in a state of confusion. In the hope

of denting that confusion a little bit, we will now replace one of those uses

of the word with a special term for our purposes. We will refer to a

microscopic state of a single particle as a level.

A level is a particular set of quantum numbers. Thus nx ¼ 2, ny ¼ �3,

nz ¼ 0 is a level, which we can call “the level (2, �3, 0)”. If a particle is in

that state, we will say it “occupies the level (2, �3, 0)”. Any atom

occupying that level has energy ε ¼ 13ε0 ¼ 13h2/(2mL2). There may be

many levels with the same energy for a single particle. In fact, the last

part of Problem 1.3 can be restated as follows: How many levels are there

with energy 25ε0 for one particle?
If there is more than one atom (or molecule or particle) in the

box, there may be more than one atom in the same level. We will call

the number of atoms in a level the occupation number of the level. Giving

the occupation numbers of all of the levels specifies the microscopic state

of a system of particles in a box. In other words, we need to know how

many particles are in each level, but not which ones are there.

Example 1.2.2

Here is a schematic representation of one possible microscopic state

of a system consisting of six atoms with a total of 7 units of energy:

1.2 Counting quantum states 9
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We are now in a position to say exactly what is meant by Γ for a perfect

gas in the situation which formed our starting point: N atoms in an

isolated box with total energy U. For convenience we take the box to be

a cube of side L, so that V ¼ L3, and U ¼ Bε0, where B is some (usually

very big) number (in Example 1.2.2 above, N ¼ 6 and B ¼ 7). A possible

microscopic state of the system is a specific set of all the occupation

numbers of all the levels in the box such that all the particles get used

up, and all the energy gets used up. Γ is then the number of possible

microscopic states of the system.

Problem 1.4

For the situation outlined in the paragraph above, find Γ in the

following cases:

ðaÞ N ¼ 2 and B ¼ 24 ðanswer 4116Þ
ðbÞ N ¼ 2 and B ¼ 25 ðanswer 3906Þ
ðcÞ N ¼ 2 and B ¼ 26 ðanswer 5040Þ

Hint: The problem is just to organize the job of counting. Consider, for

example, the case in which B ¼ 25. In every possible state of the system,

two levels are occupied by one atom each (since the energies must add up

to an odd number) and all other levels are empty. First consider all states

in which the level (0, 0, 0) is occupied. The other atom must be in some

level with 25 units of energy. The possibilities are (±5, 0, 0), (0, ±5, 0),

(0, 0, ±5); six levels so far. We can also reach 25 with a combination of 32

and 42. In the vector (nx, ny, nz), there are three places for a 4 to appear,

nx ny nz

Energy of each atom
in this level

Occupation
number

Total energy of
atoms in level

0 0 0 0 2 0
1 0 0 ε0 0 0
0 1 0 ε0 1 ε0
0 0 1 ε0 0 0
�1 0 0 ε0 0 0
0 �1 0 ε0 0 0
0 0 �1 ε0 0 0
. . . . . . . . .
1 1 0 2ε0 3 6ε0

All other states
Unoccupied
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