Index

acuity scores, 277
adaptive point process filtering, 303, 310–311
application, 324
adenosine triphosphate (ATP), 332
Akaike information criterion (AIC), 83, 99, 104, 178, 247, 248, 315
α-recursion, 19
Alzheimer’s disease, 115
amygdala, 322
anterior hippocampus, 322
APACHE-IV, 270, 277
approximate marginal inference, 285
artefacts, 28
arterial blood pressure (ABP), 290, 302
see also blood pressure
assumed density filtering (ADF), 40
particle filtering as, 42–43
assumed density smoothing (ADS), 40
ATR Human Subject Review Committee, 68
auditory cortices, 68
automatic relevance determination (ARD), 56
autoregressive (AR) models, 2, 16
cardiophysiological data, 323
conditional heteroskedastic (ARCH), 31, 37
hidden Markov model (AR-HMM), 257, 259
hierarchical Dirichlet process, 260
higher-order scalar and vector, 16–17
multivariate (MAR), 54, 66, 92–93
nearest-neighbors with exogenous input (NNARX) see nearest-neighbors
autoregressive with exogenous input, 45
parameter estimation, 57
switching see switching vector autoregressive (SVAR)
autoregressive conditional heteroskedastic (ARCH) model, 31, 37
autoregressive integrated moving average (ARIMA) model, 27, 323
cardiophysiological data, 314, 319–321
autoregressive moving average (ARMA) model, 86, 91, 309
baroflex sensitivity, 302
basal ganglia, 128
Bayes factor, 177
Bayes’ rule, 3–4, 14, 43, 171, 187
Bayesian estimation, 4–5
heart rate, 348
source reconstruction, 55–57
Bayesian information criterion (BIC), 83, 99, 104, 178
belief networks, 15
latent variables, 30
beta process autoregressive hidden Markov model (BP-AR-HMM), 261
applications to clinical data, 269
time oxygen level dependent (BOLD) signal, 79, 81, 102, 114
blood pressure (BP), 257, 272, 273, 275, 276, 290
arterial, 290, 302
cardiological models and, 307
blood samples, 25, 28
Bonferroni correction, 75
bootstrap filter, 42
bradycardia, 25
brain machine interface, 195, 207
brainstem, 322
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, 84, 100, 289
burn-in, 166
burst suppression, 330
existing models, 332
length, 336
onset, 330
probabilistic modeling, 333–336, 342
simplified model, 333 336, 342
probability (BSP), 331, 337, 340
ratio (BSR), 330
reduced order model, 333
state space modeling, 338
C++, 248
calcarine sulcus, 69
calcium imaging, 9
calculus of variations, 61
cardiac surgery, 343
cardiophysiological data, 302–303
ARIMA model, 319–321
model order selection, 315
modeling robustness, 323
point process filter, 304–306, 310–311
time-varying frequency analysis, 311
dynamic R-R spectrum, 312
feedback loop frequency response, 311
feedforward loop frequency response, 312, 313
dynamic coherence, 313
cardiovascular dynamics, 274–278
center manifold theorem, 126
cerebral metabolic rate of oxygen (CMRO), 332
Cerebus acquisition system, 218
change-point test, 232, 233
Chapman-Kolmogorov equation, 4
Cholesky decomposition, 300
clinical data, 10
inference algorithms, 262
sampling, 264
clinical monitoring, 10
cluster analysis, 79
computational cost
decision-making modeling, 182
Markov chain Monte Carlo methods, 267
source reconstruction, 57–58, 62, 63
conditional intensity function (CIF), 211, 221, 306, 311
interneuronal interactions, 226
conductance-based neural models, 117
continuous variables, 1, 16
control theory, 90
trollability, 3
convolution modeling, 117
correction smoothing, 20
cortical local field potentials, 293
cortico-basal ganglia thalamocortical network, 128
Cox process, 139
data smoothing, 9
decision modeling, 160–161
diffusion-to-bound model, 166–167
inference, 168
model comparison, 177–178
point process models, 163–178
Markov chain Monte Carlo method, 164–166
switching model, 173–175
computational cost, 182
latent state sampling, 174–175
parameter sampling, 176
depth learning, 284, 285
deterministic processes, 1
deviance information criterion (DIC), 177, 197, 247
diagnostic state space method (dSSM), 59, 72
estimation algorithm, 61
individual temporal dynamics estimation, 73
probabilistic model, 59–60, 64
joint probability distribution, 60
real data analysis, 68
simulation analysis, 66–68
diencephalon, 322
diffusion magnetic resonance imaging (dMRI), 58–59, 66
diffusion-to-bound model
inference, 168
latent trajectory sampling, 168
parameter sampling, 171–173
direct pathways, 128
directed acyclic graph (DAG), 233, 284
Drichlet process, 201
discrete state Markov models, parameter estimation, 44
discrete variables, 1
dopamine loss, 128
dynamic causal modeling (DCM), 74, 119, 130, 132
learning, 232
model optimization, 131
model in time domain, 119–122
non-EEG applications, 132
Validation, 132
dynamics reversal, 20
electrocorticography (ECoG), 74–75
electrocardiography (ECG)
Bayesian filtering, 355–358
signal degradation sources, 346, 347
signal quality evaluation, 353–355, 361
state space approaches, state of art, 347
switching Kalman filter, 356, 357
X-factor approach, 356–358
see also heart rate
electroocorticography (EOG), 118
electroencephalography (EEG), 9, 53, 284
automatic segmentation, 337–338
burst suppression, 30, 330
‘ground truths’, 114
linear approximations to time series, 123
modeling approaches, 116
signal features between normal and pathological states, 115
variational Bayes estimation, 47
see also neural spike trains
electromyograms, 6
entopeduncular nucleus (EPN), 129
epilepsy, 131
evidence, 8
expectation, 4
expectation maximization (EM), 84, 162, 286
general linear model with hidden states (GenLMHS), 215
Kalman filter, 209, 213
Index

Poisson linear dynamic systems (PLDS), 147, 153, 155
switching vector autoregressive (SVAR) models, 286, 289, 291
variational Bayes (VB) method, 197
expectation-correction, 25
eyeblink detection, 21
factor analysis, 225
Fano factors, 151
field-programmable gate array (FPGA), 201
filtering, 18–19
Fisher information, 173
fMRI time series, nearest-neighbors AR with exogenous input (NNARX), 97–98
Fokker-Planck formalism, 117
free energy, 197
frontal eye field (FEF), 161
full state space model (fSSM), 64–66
estimation algorithm, 65–74
experimental validation, 75
real data analysis, 71
statistical test on source activities and interactions, 74
structural connectivity, 66–68
functional magnetic resonance imaging (fMRI), 9, 53, 58–59, 79, 114
blood oxygen level dependent (BOLD) signal, 79, 81, 102, 114
cardiophysiological data correlation, 321–322
clinical examples, 102–106
colored noise, 86
dynamic causal modeling (DCM), 132
innovation approach, 82–84
maximum likelihood estimation, 84
multivariate autoregressive (MAR) model, 92–93
spatial whitening, 94–95
nearest-neighbors AR with exogenous input (NNARX), 93
with spatial whitening, 98–99
non-Gaussian data, 97–98
parameter estimation, 99
predictive models, 80
general linear model (GenLM), 85–90
preprocessing, 82
time series structure, 81–82
exogenous input function, 82
stimulation function, 82
Gaussian distribution, 2, 305
heart rate interval, 304
Gaussian process factor analysis (GPFA), 225
Gaussian processes, 2
Gaussian-observation linear dynamical system (GLDS), 138
spectral learning, 150–151
general anesthesia, 317–319, 324
general linear model (GenLM), 80, 81, 85, 88–89
discrete time formulation, 88–89
functional magnetic resonance imaging (fMRI) data, 321
with hidden states (GenLMH), 215
conditional intensity function, 221
Kalman filtering and, 224
model identification, 216–217, 220
model fitting, 104
motor cortex activity, 209
observation noise, 89–90
parameter estimation, 100–101
state space model, 90–91, 108
generalized autoregressive conditional heteroskedastic (GARCH) model, 31, 37
generalized pseudo Bayes, 25
Gibbs sampling, 38
goal-directed movement control, 9
gout, 284
Granger causal analysis, 132
graphics processing unit (GPU), 168, 182
hemodynamic response function (HRF), 85, 91
state space model (SSM), 87–91
Hamiltonian Monte Carlo method, 248
heart beat interval
inverse Gaussian distribution, 324
nonlinearity, 313
probability models, 304
heart rate, 27, 291
beat detector agreement estimation, 348
instantaneous indices, 306–307
interval analysis, 302
power spectrum subband evaluation, 348
premature babies, 26
skewness and kurtosis, 349
state space fusion model, 346–347
state space model, 349–351
comparison to other techniques, 352
observation noise, 350
results, 351
variability, 283, 302
instantaneous indices, 306–307
hidden Markov model (HMM), 17–21, 23, 47, 162
autoregressive (AR-HMM), 257
hierarchical Dirichlet process, 260
continuous-state, 22–23
decision modeling, 174, 175
latent state sampling, 174–175
parameter sampling, 176
deterministic, 30
dynamic synapses, 35–37
leaky integrate-and-fire, 37–38
discrete state, 20–21
electrocardiogrammetry, 356

© in this web service Cambridge University Press
www.cambridge.org
hidden Markov model (HMM) (cont.)
 filtering, 19
 first-order, 15
 fully-observed, 15–17
 hierarchical Dirichlet prior, 259–260
 hippocampal spike activity, 186
 Hopfield membrane potential as, 34
 inference, 18
 approximation 38
 parameter estimation, 32, 43–44
 prediction, 20
 second-order, 15
 sleep-stage scoring, 6
 smoothing, 19
 see also hidden semi-Markov model; Markov
 chain Monte Carlo methods
hidden semi-Markov models (HSMM), 162
 hierarchical Dirichlet (HDP) process, 201, 257, 278
 autoregressive hidden Markov model
 (HDP-AR-HMM), 263, 278
 Gibbs sampling, 263
 Markov chain Monte Carlo (MCMC)
 algorithms, 266–267
 parameter settings, 269
 hippocampal neurons, 9
 hidden Markov model selection, 187–188, 201
 hidden semi-Markov models (HSMM), 162
 overdispersed Poisson model, 202
 population codes, 195
 experimental results, 198
 Markov chain, 196
 as topology graph, 198
 Variational Bayes (VB) model, 196
 spike sorting-free decoding, 201
 Hopfield membrane potential, 34
 augmented network, 35

 importance sampling, 40
 inference, 7–8
 approximate
 assumed density filtering, 39
 importance sampling, 40–41
 linear Markov models, 38–43
 Monte Carlo methods, 38
 sampling, 38
 variational, 39
 computational cost, 24
 difference-to-bound decision model, 168
 latent trajectory sampling, 168
 in linear systems, 23
 inferior fusiform gyrus, 69
 inferior occipital gyrus, 69
 inferior temporal cortex, 293
 inferior temporal (IT) cortex, 293
 inhibitory neurons, 122

inhomogeneous Poisson process (IPP), 215, 220
 innovations, 80, 82–84
 intensive care unit (ICU), 258, 331
 data generated, 345
 population heterogeneity, 345
 inverse Gaussian distribution, 305
 inverse problems, 9, 81
 joint probability distribution
 diagonal state space method, 60
 full state space method, 65
 Jordan form, 87
 Kalman filter, 47, 84, 106, 146, 208
 heart rate estimation, 348, 350
 with hidden states, 219–220
 decoding, 222
 higher-value hidden dimension, 226
 learning, 232
 motor cortex, 209–211
 hidden states, 212
 switching (SKF), 354, 356, 357
 Kernel density estimation (KDE), 190–192, 194
 density representation, 191
 Kirchoff’s law, 117
 KL divergence, 145
 Kolmogorov-Smirnov plot, 305, 315
 Kullback-Leibler divergence, 61, 142
 Laguerre function, 309
 Langevin algorithm, 173, 176
 Laplace expectation maximization, 147
 Laplace transform, 124
 latent Markov model (lMM) see hidden Markov
 model (HMM)
 lateral interparietal area (LIP), 161, 162
 primates, 163
 learning (algorithmic), 287
 error back-propagation, 287, 291
 global label from hidden state proportions, 287
 sequential labels from local marginals, 288
 learning (animal and human), 9, 231
 change-point test, 232, 233
 curve estimation, 232
 deep brain stimulation, 244–247
 dynamic causal modeling (DCM), 232
 example data set, 237–239
 as random walk, 234
 response bias in object-place association, 239,
 241–244
 state space model (SSM), 231–233
 leukemia, 284
 LFP model, 119–122
 light-field calcium imaging, 137
 likelihood, 7, 248
 linear dynamical systems (LDS), 22
Gaussian-observation (GLDS), 138
inference, 23
Poisson see Poisson linear dynamical system smoothing, 23
switching (SLDS), 23
local linearization, 89
logistic regression, 244–247
lognormal distribution, 305
LORETA method, 55
Lyapunov exponents, 125–126
M1 neurons, 9
machine learning, 347
magnetoencephalography (MEG), 9, 53
diagonal state space (dSSM) analysis, 68
full state space method (fSSM) analysis, 71
simulated, 66
source reconstruction, 53–54
MAGNETOM trio, 57
marginal likelihood, 8
marginalization, 4, 285, 287
Markov, Andrey, 1
Markov chain, 1
Markov chain Monte Carlo (MCMC), 56, 161, 225, 233, 262
learning models, 234, 245
convergence, 236
neural spike rates
burn-in, 166
initialization point, 166
model comparison, 180
sample generation, 165
simulated datasets, 178, 179
Marr-Hildreth operator, 108
Massachusetts General Hospital, 317–319
Massachusetts Institute of Technology General Clinical Research Center, 316
MATLAB, 109, 292
matrix-normal-inverse-Wishart (MNIW) prior, 259
maximum a posteriori (MAP) estimation, 44, 164
maximum likelihood estimation (mle), 7, 44, 147, 164
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, 84, 100, 289
fMRI time series, 84, 100
overfitting, 8
mean squared error, 178, 223
medical trainees, 249
membrane potential, 34, 37
mesencephalon, 322
metabolic state, 339
Metropolis sampling, 38
Metropolis-Hastings algorithm, 38, 172
micro-drive arrays, 198
microdialysis, 114
MIMIC II database, 258, 268, 351–354
association analysis, 270, 272–274
HDP-AR-HSMM, 272–274
mortality risk estimation, 271–272
mixed pair hidden Markov model (MPH), 225
mobile health, 346
mode proportion, 270
model fitting, 81
modulation transfer functions, 124–125
Monte Carlo techniques, 24, 139
Hamiltonian, 248
see also Markov chain Monte Carlo methods
Morris-Lecar model, 117
mortality risk estimation, MIMIC II database, 271–273
motor cortex, 207
experimental data, 218
collection, 218
factor analysis, 225
general linear model (GenLM), 211–212
hidden state framework, 209
Kalman filter, 209–211
with hidden states (KFHS), 212
primary, 5
motor neuroprosthetics, 5, 6
multi-input-multi-output (MIMO) model, 132
multinovem algorithm, 248
multiple linear regression, 208
multivariate autoregressive (MAR) model, 54, 66, 73
fMRI time series, 92–93
parameter numbers, 93
spatial whitening, 96, 98–99
state space variant, 81, 96–99
with hidden states (KFHS), 212
nearest-neighbors AR with exogenous input (NNARX), 80
fMRI time series, 93
local (voxel-level) model, 94
non-Gaussian data, 97–98
model fitting tools, 81
parameter estimation, 99
spatial whitening, 96, 98–99
state space variant, 81, 96–99
observation noise, 106
parameter estimation, 101–102
negative binomial (NB) distribution, 202
negentropy, 287, 288
Nelder-Mead simplex algorithm, 84, 100
local (voxel-level) model, 94
non-Gaussian data, 97–98
model fitting tools, 81
parameter estimation, 99
spatial whitening, 96, 98–99
state space variant, 81, 96–99
observation noise, 106
parameter estimation, 101–102
negative binomial (NB) distribution, 202
negentropy, 287, 288
Nelder-Mead simplex algorithm, 84, 100
neocortex, 186
neural decoding, 210
neural field models, 118
neural mass models, 116
applications, 127–130
conductance models, 107
convolution modeling, 117, 118
excitatory cells
pyramidal, 123
spiny, 122
neural mass models (cont.)
 firing rate, 116
 firing rate curve, 116
 Fokker-Planck, 117
inhibitory cells in supergranular layers, 122
linear approximations, 123
Lyapunov exponents, 125–126
modulation transfer functions, 124–125
state space formulation, 122
neural models, 33
neural networks, 284
neural prosthetics, 9, 207
neural spike trains, 9, 156
decision-making and, 160
 switching model, 173–175
linear state space models, 139–141
motor cortex
 latent variable models, 225
 prior methods, 208
as point process, 189
Poisson linear dynamic systems, 138–139
rat hippocampus
 Bayesian decoding, 187–188
decoding, 186
experimental data, 193
 Kernel density estimation, 190–192, 194
sleep states, 202
 sorting algorithms, 187
state estimation from, 141
 Laplace approximation, 142–144
neuronal ensembles, 9
neuronal plasticity, 9
noise
 diagonal state space method, 60
 NNARX-SS method, 101–102
non-Poisson process (NPP), 215, 222
normalization, 4
normalized log-likelihood ratio (NLLR), 219, 220
normalized root mean squared error, 70
observable, 3
Othahara syndrome, 330
overfitting, 8
parameter estimation, 99
autoregressive (AR) models, 45–57
discrete state Markov models, 44
functional magnetic resonance imaging (fMRI), 99, 108
computational expense, 109
general linear model (GenLM), 100–101
latent Markov model (IMM), 32, 43–44
nearest-neighbors AR with exogenous input (NNARX), 99
nearest-neighbors AR with exogenous input (NNARX-SS), 101–102
Poisson linear dynamic systems (PLDS), 153, 147–155
Parkinson's disease, 128
 particle filtering, 40–42, 168
as assumed density filtering (ADF), 42–43
neural models of decision-making, 168
partition function, 8
peri-stimulus time histogram (PSTH), 141
phenotypic dynamics, 283
physiological cohort time series, 283
physiological monitoring artefacts, 25–29
PLDSID algorithm, 152
point process filter, 208, 217, 324
 adaptive, 303, 310–311
cardiophysiological data, 304–306, 310–311
point process models
decision-making, 163–178
 heartbeat intervals, 304–306
neural spike trains, 189
Poission distribution, 189
Poisson linear dynamic systems (PLDS), 138–139
behavior on synthetic data
 model generation, 152
 parameter estimation, 153, 147–155
 subspace identification, 151–152
poles, 125
polysomnography (PSG), 6
population vectors, 208
posterior-predictive likelihood, 177
pre-whitening, 86
premature babies, 25
heart rate, 26
premature ventricular contractions (PVC), 355
preprocessing
 functional magnetic resonance imaging (fMRI), 82, 95, 102
 tilt-table experiments, 268
 see also filtering; smoothing
primary motor cortex (M1), 5, 9
primate models
 learning, 239, 241–244
 deep brain stimulation, 244–247
 MI neurons, 9
 motor cortex, 207, 218
principal component analysis (PCA), 46–47, 79, 353, 354
probabilistic time series models, 14–15
graphical depiction, 14–15
probability density function (pdf), 1
 probability mass function (pmf), 1
posterior predictive distribution, 8
Q-Q plot, 305
random variables, 1
 observed and unobserved, 1–2
rapid eye movement (REM) sleep, 6, 202
rat models, 9
hippocampal neurons, 186
learning, 239–242
Rauch-Tung-Striebel (RTS) pass, 40, 100
recurrent neural network (RNN), 284, 292
regularization, 8
respiratory effort, 302
representation learning, 284
reset models, 29–30
respiratory pressure, 307
respiratory sinus arrhythmia (RSA), 302
response-bias models, 239, 241–244
risk minimization, 285
rwSSM, 68
SAPS, 277
schizophrenia, 115, 131
seizure, 123
semi-definite programs, 145
sequence disambiguation problem, 34
sequential importance sampling (SIR), 169
signal quality index (SQI), 353, 354, 361
silicon multielectrode array recording, 137
since-cell recordings, 114
sleep-stage scoring, 5–6
slow-wake sleep (SWS), 202
smoothing, 18, 19, 84
assumed density (ADS), 40
correction, 19–20
Gaussian sum, 25
linear dynamical systems (LDS), 23
parallel, 19
Rauch-Tung-Striebel (RTS) pass, 40
source reconstruction, 54–56, 59
Bayesian, 55–57
challenges, 57
computational cost, 57–58
diagonal state space method, 59–64
full state space model (SSM), 64–66, 73
future directions, 74–75
nonlinear and nonstationary dynamics, 74
norm regularization, 55
parameter numbers, 58
reduction, 58–59
state space methods, 55, 57
sparseness (of a matrix), 93
spatial whitening, 96, 98–99
spatiotemporal Poisson process (STPP), 188
spectral learning, 149–150
spike trains see neural spike trains
spikes, 137
SPM software, 119, 120
SPMS, 102
state equations, 2
state receptive fields, 200
state space models (SSM), 2, 54, 186
applications, 9
burst suppression, 338
conditional probability, 2
diagonal see diagonal state space method
full (fSSM), 66
source reconstruction, 66, 73
general linear model (GenLM), 85–90
hemodynamic response function (HRF), 87–91
heart rate, 349–351
learning, 231–233
T-maze, 239
linear
likelihood function, 7
neural spike train modeling, 139–141
for neural spike trains, 138
state transition probability, 2
stochastic processes, 1
striatum, 128
structured output classification, 285
subspace identification, 156
Gaussian-observation linear dynamical system (GLDS), 150–151
support vector machines (SVM), 349
heart rate, 357
switching Kalman filters (SKF), 354
electrocardiogrammetry (ECG), 356, 357
switching linear dynamical systems (SLDS), 23, 30, 38, 258
clinical applications, 25–29
computational tractability, 24
independence structure, 24
switching Markov processes, 258
switching vector autoregressive (SVAR) models, 21, 258, 285–289
expectation maximization, 286, 289, 291
gradient
inference and hidden state marginal, 297
model parameters, 299
regression layer, 297
physiological cohort time series, 283
simulated time series, 289–290
tilt-table experiments, 290–293
time series classification, 285–289
synaptic modeling, 35–37
depression factors, 36
tachogrammetry, 303
tank model, 87
telemedicine, 346
temperature probes, 25
temporal marked point process, 189
temporal smoothing, 86
tetraplegia, 9
thinning, 235
tilt-table experiments, 268, 271, 316–317
cardiophysiological data, 316–317
patient risk stratification, 270
Index

tilt-table experiments (cont.)
switching autoregressive (SVAR) models, 290–293
time series, 14
unobserved variables, 3
urate acid, 284

variance of conditional expectation (VarCE), 181
variational Bayes (VB) technique, 46–47, 61
fMRI time series analysis, 84
free energy, 61
rat hippocampal neurons, 196
variational estimation, 24, 46–47
variational Kalman filtering, 62
vector of covariates (COV), 308

vegetative state, 131
Volterra-Wiener series, 302

weak limit approximation, 263
Weibull hazard function, 340
white-matter pathways, 66
whitening, 80
fMRI time series data, 94–95
wide-sense stationary (WSS) processes, 1
Wiener-Volterra expansions, 307–309
WinBUGS, 233, 235, 245, 248

X-factor, 358
XClust, 199
Yokogawa MEG system, 68

zeroes, 125–126