Contents

<table>
<thead>
<tr>
<th>Notation</th>
<th>page xii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xvii</td>
</tr>
</tbody>
</table>

Part I Preliminaries

1. **Molecular biology and high-throughput sequencing**
 - 1.1 DNA, RNA, proteins
 - 1.2 Genetic variations
 - 1.3 High-throughput sequencing
 - Exercises
 - 3

2. **Algorithm design**
 - 2.1 Complexity analysis
 - 2.2 Data representations
 - 2.3 Reductions
 - 2.4 Literature
 - Exercises
 - 10

3. **Data structures**
 - 3.1 Dynamic range minimum queries
 - 3.2 Bitvector rank and select operations
 - 3.3 Wavelet tree
 - 3.3.1 Balanced representation
 - 3.3.2 Range queries
 - 3.4 Literature
 - Exercises
 - 20

4. **Graphs**
 - 4.1 Directed acyclic graphs (DAGs)
 - 4.1.1 Topological ordering
 - 4.1.2 Shortest paths
 - 30
Contents

4.2 Arbitrary directed graphs 33
4.2.1 Eulerian paths 33
4.2.2 Shortest paths and the Bellman–Ford method 34
4.3 Literature 38
Exercises 38

5 Network flows 41
5.1 Flows and their decompositions 41
5.2 Minimum-cost flows and circulations 45
5.2.1 The residual graph 47
5.2.2 A pseudo-polynomial algorithm 50
5.3 Bipartite matching problems 51
5.3.1 Perfect matching 52
5.3.2 Matching with capacity constraints 54
5.3.3 Matching with residual constraints 56
5.4 Covering problems 58
5.4.1 Disjoint cycle cover 58
5.4.2 Minimum path cover in a DAG 60
5.5 Literature 64
Exercises 65

Part II Fundamentals of Biological Sequence Analysis 69

6 Alignments 71
6.1 Edit distance 72
6.1.1 Edit distance computation 73
6.1.2 Shortest detour 76
6.1.3 Myers’ bitparallel algorithm 78
6.2 Longest common subsequence 83
6.2.1 Sparse dynamic programming 84
6.3 Approximate string matching 86
6.4 Biological sequence alignment 88
6.4.1 Global alignment 89
6.4.2 Local alignment 90
6.4.3 Overlap alignment 92
6.4.4 Affine gap scores 94
6.4.5 The invariant technique 97
6.5 Gene alignment 98
6.6 Multiple alignment 101
6.6.1 Scoring schemes 101
6.6.2 Dynamic programming 103
6.6.3 Hardness 103
6.6.4 Progressive multiple alignment 104
6.6.5 DAG alignment 105
6.6.6 Jumping alignment 107
6.7 Literature 108
Exercises 109

7 Hidden Markov models (HMMs) 113
7.1 Definition and basic problems 114
7.2 The Viterbi algorithm 118
7.3 The forward and backward algorithms 118
7.4 Estimating HMM parameters 120
7.5 Literature 122
Exercises 123

Part III Genome-Scale Index Structures 127

8 Classical indexes 129
8.1 k-mer index 129
8.2 Suffix array 132
8.2.1 Suffix and string sorting 133
8.3 Suffix tree 140
8.3.1 Properties of the suffix tree 142
8.3.2 Construction of the suffix tree 143
8.4 Applications of the suffix tree 145
8.4.1 Maximal repeats 145
8.4.2 Maximal unique matches 147
8.4.3 Document counting 149
8.4.4 Suffix–prefix overlaps 151
8.5 Literature 151
Exercises 153

9 Burrows–Wheeler indexes 157
9.1 Burrows–Wheeler transform (BWT) 158
9.2 BWT index 160
9.2.1 Succinct LF-mapping 160
9.2.2 Backward search 162
9.2.3 Succinct suffix array 163
9.2.4 Batched locate queries 165
*9.3 Space-efficient construction of the BWT 166
9.4 Bidirectional BWT index 171
*9.4.1 Visiting all nodes of the suffix tree with just one BWT 175
*9.5 BWT index for labeled trees 177
*9.5.1 Moving top-down 179
*9.5.2 Moving bottom-up 181
Table of Contents

Part IV Genome-Scale Algorithms

10 Read alignment

10.1 Pattern partitioning

10.2 Dynamic programming along suffix tree paths

10.3 Backtracking on BWT indexes

10.4 Suffix filtering for approximate overlaps

10.5 Paired-end and mate pair reads

10.6 Split alignment of reads

10.7 Alignment of reads to a pan-genome

10.8 Literature

Exercises

11 Genome analysis and comparison

11.1 Space-efficient genome analysis

11.1.1 Maximal repeats

11.1.2 Maximal unique matches

11.1.3 Maximal exact matches

11.2 Comparing genomes without alignment

11.2.1 Substring and k-mer kernels

*11.2.2 Substring kernels with Markovian correction

11.2.3 Substring kernels and matching statistics

11.2.4 Mismatch kernels

11.2.5 Compression distance

11.3 Literature

Exercises
<table>
<thead>
<tr>
<th>12</th>
<th>Genome compression</th>
<th>262</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1</td>
<td>Lempel–Ziv parsing</td>
<td>263</td>
</tr>
<tr>
<td>12.1.1</td>
<td>Basic algorithm for Lempel–Ziv parsing</td>
<td>264</td>
</tr>
<tr>
<td>12.1.2</td>
<td>Space-efficient Lempel–Ziv parsing</td>
<td>265</td>
</tr>
<tr>
<td>12.1.3</td>
<td>Space- and time-efficient Lempel–Ziv parsing</td>
<td>266</td>
</tr>
<tr>
<td>*12.2</td>
<td>Bit-optimal Lempel–Ziv compression</td>
<td>270</td>
</tr>
<tr>
<td>*12.2.1</td>
<td>Building distance-maximal arcs</td>
<td>275</td>
</tr>
<tr>
<td>*12.2.2</td>
<td>Building the compact trie</td>
<td>278</td>
</tr>
<tr>
<td>12.3</td>
<td>Literature</td>
<td>279</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>280</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13</th>
<th>Fragment assembly</th>
<th>282</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1</td>
<td>Sequencing by hybridization</td>
<td>282</td>
</tr>
<tr>
<td>13.2</td>
<td>Contig assembly</td>
<td>284</td>
</tr>
<tr>
<td>13.2.1</td>
<td>Read error correction</td>
<td>285</td>
</tr>
<tr>
<td>13.2.2</td>
<td>Reverse complements</td>
<td>286</td>
</tr>
<tr>
<td>13.2.3</td>
<td>Irreducible overlap graphs</td>
<td>287</td>
</tr>
<tr>
<td>13.3</td>
<td>Scaffolding</td>
<td>291</td>
</tr>
<tr>
<td>13.4</td>
<td>Gap filling</td>
<td>297</td>
</tr>
<tr>
<td>13.5</td>
<td>Literature</td>
<td>299</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>301</td>
</tr>
</tbody>
</table>

Part V Applications

<table>
<thead>
<tr>
<th>14</th>
<th>Genomics</th>
<th>307</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1</td>
<td>Variation calling</td>
<td>308</td>
</tr>
<tr>
<td>14.1.1</td>
<td>Calling small variants</td>
<td>308</td>
</tr>
<tr>
<td>14.1.2</td>
<td>Calling large variants</td>
<td>309</td>
</tr>
<tr>
<td>14.2</td>
<td>Variation calling over pan-genomes</td>
<td>313</td>
</tr>
<tr>
<td>14.2.1</td>
<td>Alignments on a set of individual genomes</td>
<td>313</td>
</tr>
<tr>
<td>14.2.2</td>
<td>Alignments on the labeled DAG of a population</td>
<td>314</td>
</tr>
<tr>
<td>14.2.3</td>
<td>Evaluation of variation calling results</td>
<td>315</td>
</tr>
<tr>
<td>14.3</td>
<td>Haplotype assembly and phasing</td>
<td>315</td>
</tr>
<tr>
<td>14.4</td>
<td>Literature</td>
<td>322</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>323</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15</th>
<th>Transcriptomics</th>
<th>325</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1</td>
<td>Estimating the expression of annotated transcripts</td>
<td>325</td>
</tr>
<tr>
<td>15.2</td>
<td>Transcript assembly</td>
<td>329</td>
</tr>
<tr>
<td>15.2.1</td>
<td>Short reads</td>
<td>329</td>
</tr>
<tr>
<td>15.2.2</td>
<td>Long reads</td>
<td>330</td>
</tr>
<tr>
<td>15.2.3</td>
<td>Paired-end reads</td>
<td>335</td>
</tr>
</tbody>
</table>
15.3 Simultaneous assembly and expression estimation 337
15.4 Transcript alignment with co-linear chaining 342
15.5 Literature 345
Exercises 346

16 Metagenomics 350
16.1 Species estimation 351
 16.1.1 Single-read methods 351
 16.1.2 Multi-read and coverage-sensitive methods 353
16.2 Read clustering 357
 16.2.1 Filtering reads from low-frequency species 357
 16.2.2 Initializing clusters 359
 16.2.3 Growing clusters 363
16.3 Comparing metagenomic samples 364
 16.3.1 Sequence-based methods 365
 16.3.2 Read-based methods 365
 16.3.3 Multi-sample methods 366
16.4 Literature 366
Exercises 367
References 370
Index 386