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Introduction

Performance evaluation is a basic element of experimental computer science. It is
used to compare design alternatives when building new systems, to tune parameter
values of existing systems, and to assess capacity requirements when setting up
systems for production use. Lack of adequate performance evaluation can lead to
bad decisions, which result either in an inability to accomplish mission objectives
or an inefficient use of resources. A good evaluation study, in contrast, can be
instrumental in the design and realization of an efficient and useful system.

There are three main factors that affect the performance of a computer system:

1. The system’s design.
2. The system’s implementation.
3. The workload to which the system is subjected.

The first two factors are typically covered with some depth in vocational training
and academic computer science curricula. Courses on data structures and algorithms
provide the theoretical background for a solid design, and courses on computer
architecture and operating systems provide case studies and examples of successful
designs. Courses on performance-oriented programming and on object-oriented
design, as well as programming labs, provide the working knowledge required to
create and evaluate implementations. But there is typically little or no coverage
of performance evaluation methodology in general and of workload modeling in
particular.

Regrettably, performance evaluation is similar to many other endeavors in that
it follows the GIGO principle: garbage-in-garbage-out. Evaluating a system with
the wrong workloads will most probably lead to irrelevant results, which cannot be
relied on. This motivates the quest for the “correct” workload model [716, 256, 653,
19, 731, 103, 235, 635]. It is the goal of this book to help propagate the knowledge and
experience that have accumulated in the research community regarding workload
modeling and to make it accessible to practitioners of performance evaluation.

To read more: Although performance evaluation in general and workload modeling
in particular are typically not given much consideration in vocational and academic
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2 Introduction

curricula, there has nevertheless been much research activity in this area. Good
places to read about this are textbooks on performance evaluation, including the
following:

� Jain [366] cites the arguments about what workload is most appropriate as the
deepest rat hole that an evaluation project may fall into (page 161). Nevertheless,
he does provide several chapters that deal with the characterization and selection
of a workload.

� Law and Kelton [426] provide a very detailed presentation of distribution fitting,
which is arguably at the core of workload modeling.

� Le Boudec [428] has perhaps the most practical and down-to-earth exposition
of performance evaluation, including a discussion of model fitting and heavy-
tailed distributions. And it has the advantage of being available for free from
http://perfeval.epfl.ch/.

� The book on self-similar network traffic edited by Park and Willinger [536]
provides good coverage of heavy tails and self-similarity.

In addition there are numerous research papers, many of which are cited in this
book and appear in the Bibliography. For an overview, see the survey papers by
Calzarossa and co-authors [103, 101]. Another good read is the classic paper by
Ferrari [258]. This book has its roots in a tutorial presented at Performance 2002
[234].

1.1 THE IMPORTANCE OF WORKLOADS

The study of algorithms involves an analysis of their performance. When we say that
one sorting algorithm is O(n log n), whereas another is O(n2), we mean that the first
is faster and therefore better. But this is typically a worst-case analysis, which may
occur, for example, only for a specific ordering of the input array. In fact, different
inputs may lead to very different performance results. The same algorithm may
terminate in linear time if the input is already sorted to begin with, but may require
quadratic time if the input is sorted in the opposite order.

The same phenomena may happen when evaluating complete systems: they may
perform well for one workload, but not for another.1 To demonstrate the importance
of workloads we next describe three examples in which the workload makes a large
difference to the evaluation results.

Example 1: Scheduling Parallel Jobs by Size
A simple model of parallel jobs considers them as rectangles in processors × time
space: each job needs a certain number of processors for a certain interval of time.
Scheduling is then the packing of these job-rectangles into a larger rectangle that
represents the available resources.

1 Incidentally, this is true for all types of systems, not only for computer systems. A female computer
scientist once told me that an important side benefit of her chosen career is that she typically does not
have to wait in line for the ladies room during breaks in male-dominated computer science conferences.
But this benefit was lost when she attended a conference dedicated to encouraging female students to
pursue a career in computer science.
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1.1 The Importance of Workloads 3

It is well known that average response time is reduced by scheduling short jobs
first (the SJF algorithm). The problem is that the runtime is typically not known in
advance. But in parallel systems, scheduling according to job size may unintentionally
also lead to scheduling by duration, if there is some statistical correlation between
these two job attributes.

The question of whether such a correlation exists is not easy to settle. Three
application scaling models have been proposed in the literature [740, 629]:

� Fixed work. This assumes that the work done by a job is fixed, and parallelism is
used to solve the same problems faster. Therefore the runtime is assumed to be
inversely proportional to the degree of parallelism (negative correlation). This
model is the basis for Amdahl’s law.

� Fixed time. Here it is assumed that parallelism is used to solve increasingly larger
problems, under the constraint that the total runtime stays fixed. In this case, the
runtime distribution is independent of the degree of parallelism (no correlation).

� Memory bound. If the problem size is increased to fill the available memory
associated with a larger number of processors, the amount of productive work
typically grows at least linearly with the parallelism. The overheads associated
with parallelism always grow superlinearly. Thus the total execution time actually
increases with added parallelism (a positive correlation).

Evaluating job scheduling schemes with workloads that conform to the different
models leads to drastically different results. Consider a workload that is composed
of jobs that use power-of-two processors. In this case a reasonable scheduling algo-
rithm is to cycle through the different sizes, because the jobs of each size pack
well together [418]. This works well for negatively correlated and even uncorrelated
workloads, but is bad for positively correlated workloads [418, 449]. The reason is
that under a positive correlation the largest jobs dominate the machine for a long
time, blocking out all others. As a result, the average response time of all other jobs
grows considerably.

But which model actually reflects reality? Evaluation results depend on the
selected model of scaling; without knowing which model is more realistic, we cannot
use the performance evaluation results. As it turns out, the constant time or memory-
bound models are more realistic than the constant work model. Therefore scheduling
parallel jobs by size with a preference for large jobs is at odds with the desire to
schedule short jobs first and can be expected to lead to high average response times.

Example 2: Processor Allocation Using a Buddy System
Gang scheduling is a method for scheduling parallel jobs using time slicing, with
coordinated context switching on all the processors. In other words, first the pro-
cesses of one job are scheduled on all the processors, and then they are all switched
simultaneously with the processes of another job. The data structure used to describe
this is an Ousterhout matrix [528], in which columns represent processors and rows
represent time slots.

An important question is how to pack jobs into rows of the matrix. One example
is provided by the DHC scheme [245], in which a buddy system is used for processor
allocation: each request is extended to the next power of two, and allocations are
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4 Introduction
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malized response time (slowdown) as a func-
tion of load for processor allocation to paral-
lel jobs using DHC, from [245]. The three
curves are for exactly the same system – the
only difference is in the distribution of job
sizes. The dashed lines are proven bounds
on the achievable utilization for these three
workloads.

always done in power-of-two blocks of processors. This scheme leads to using the
same blocks of processors in different slots, which is desirable because it enables a
job to run in more than one slot if its processors happen to be free in another slot.

The quality of the produced packing obviously depends on the distribution of
job sizes. The DHC scheme has been evaluated with three different distributions: a
uniform distribution in which all sizes are equally likely, a harmonic distribution in
which the probability of size s is proportional to 1/s, and a uniform distribution on
powers of two. Both analysis and simulations showed significant differences between
the utilizations that could be achieved for the three distributions (Figure 1.1) [245].
These differences correspond to different degrees of fragmentation that are inherent
to packing jobs that come from these distributions. For example, with a uniform
distribution, rounding each request size up to the next power of two leads to a 25%
loss to fragmentation – the average between no loss (if the request is an exact power
of two) and a nearly 50% loss (if the request is just above a power of two, and we
round up to the next one). The DHC scheme recovers part of this lost space, so there
is actually only 20% loss, as shown in Figure 1.1.

Note that this analysis tells us what to expect in terms of performance, provided
we know the distribution of job sizes. But what is a typical distribution encountered
in real systems in production use? Without such knowledge, the evaluation cannot
provide a definitive answer. Empirical distributions have many small jobs (similar
to the harmonic distribution) and many jobs that are powers of two. Thus using a
buddy system is indeed effective for real workloads, but it would not be if workloads
were more uniform with respect to job size.

Example 3: Load Balancing on a Unix Cluster
A process running on an overloaded machine will receive worse service than a
process running on an unloaded machine. Load balancing is the activity of migrating
a running process from an overloaded machine to an underloaded one. When loads
are balanced, processes receive equitable levels of service.

One problem with load balancing is choosing which process to migrate. Migration
involves considerable overhead. If the process terminates soon after being migrated,
that overhead has been wasted. In addition, the process cannot run during the time
it is being migrated. Again, if it terminates soon after the migration, it would have
been better off staying in its place.
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1.2 Types of Workloads 5

Thus it would be most beneficial if we could identify processes that may be
expected to continue to run for a long time and then select them for migration. But
how can we know in advance whether a process is going to terminate soon or not?
The answer is that it depends on the statistics of process runtimes.

It is well known that the exponential distribution is memoryless. Therefore if we
assume that process runtimes are exponentially distributed, we cannot use the time
that a process has run so far to learn how much longer it is expected to run: this
expectation is always equal to the mean of the distribution. In mathematical terms
the probability that the runtime T of a process will grow by an additional τ, given
that it has already run for time t, is equal to the probability that it will run for more
than τ in the first place:

Pr(T > t + τ | T > t) = Pr(T > τ)

But the runtimes of real processes on Unix systems, at least long-lived processes,
are not exponentially distributed. In fact, they are heavy-tailed [434, 319]. Specifi-
cally, the probability that a process run for more than τ time has been found to decay
polynomially rather than exponentially:

Pr(T > τ) ∝ τ−α α ≈ 1

This means that most processes are short, but a small number are very long. If we
condition the probability that a process will run for additional time on how much
it has already run, we find that a process that has already run for t time may be
expected to run for an additional t time: the expectation actually grows with how
long the process has already run! (The derivation is given in Section 5.2.1.) This
makes the long-lived processes easy to identify: they are the ones that have run the
longest so far. Selecting processes for migration based on runtime will be much better
than selecting at random, because a random process will most likely be very short.
But note that selection based on runtime depends on a detailed characterization
of the workload, which in fact is valid only for the specific workload that is indeed
observed empirically.

Sensitivity to Workloads
These three examples are, of course, not unique. There are many examples in which
workload features have a significant effect on performance. Importantly, not every
workload feature has the same effect: in some cases it is one specific workload
feature that is the most important. The problem is that it is not always obvious in
advance which feature is the most important; even if it seems obvious, we might
be wrong [237, 438, 248]. This motivates the practice of conservative workload
modeling, where an attempt is made to correctly model all known workload features,
regardless of their perceived importance [248]. Alternatively, it motivates the use of
real workloads to drive evaluations, because real workloads may contain features
that we do not know about and therefore cannot model.

1.2 TYPES OF WORKLOADS

Workloads appear in many contexts and therefore have many different types.
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6 Introduction

1.2.1 Workloads in Different Domains

The previous three examples are all from the field of scheduling by an operating
system, where the workload items are jobs that are submitted by users. This type of
workload is characterized by many attributes. If only the scheduling of the CPU is of
interest, the relevant attributes are each job’s arrival and running times. If memory
usage is also being investigated, the total memory usage and locality of reference also
come into play, because memory pressure can have an important effect on scheduling
and lead to swapping. I/O can also have a great effect on scheduling. Modeling it
involves the distribution of I/O sizes and how they interleave with the computation.
For parallel jobs, the number of processors used is an additional parameter, which
influences how well jobs pack together.

The level of detail needed in workload characterization depends on the goal
of the evaluation. For example, in the context of operating system scheduling, it is
enough to consider a process as “computing” for a certain time. But when studying
CPU architectures and instruction sets, a much more detailed characterization is
required. The instruction mix is important in determining the effect of adding more
functional units of different types. Dependencies among instructions determine the
benefits of pipelining, branch prediction, and out-of-order execution. Loop sizes
determine the effectiveness of instruction caching. When evaluating the performance
of a complete CPU, all these details have to be correct. Importantly, many of these
attributes are input dependent, so representative workloads must include not only
representative applications but also representative inputs [204].

I/O provides another example of workloads that can be quite complex. Attributes
include the distribution of I/O sizes, the patterns of file access, and the use of read
vs. write operations. It is interesting to note the duality between modeling I/O
and computation, depending on the point of view. When modeling processes for
scheduling, I/O is typically modeled as just taking some time between CPU bursts
(if it is modeled at all). When modeling I/O, computation is modeled as just taking
some time between consecutive I/O operations. Of course, it is possible to construct
a fully detailed joint model, but the number of possible parameter combinations may
grow too much for this to be practical.

Application-level workloads are also of interest for performance evaluation. A
prime example is the sequence of transactions handled by a database. Databases
account for a large part of the usage of large-scale computer systems such as main-
frames and are critical for many enterprise-level operations. Ensuring that systems
meet desired performance goals without excessive (and expensive) overprovisioning
is therefore of great importance. Again, reliable workload models are needed. For
example, the transactions fielded by the database of a large bank can be expected to
be quite different from those fielded by a database that provides data to a dynamic
web server. The differences may lie in the behavior of the transactions (e.g., how
many locks they hold and for how long, how many records they read and modify)
and in the structure of the database itself (the number of tables, their sizes, and
relationships among them).

The workload on web servers has provided a fertile ground for research, as
has network traffic in general. Of major interest is the arrival process of pack-
ets. Research in the early 1990s showed that packet arrivals are correlated over
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1.2 Types of Workloads 7

long periods, as manifested by burstiness at many different time scales. This find-
ing was in stark contrast with the Poisson model that was routinely assumed until
that time. The new models based on this finding led to different performance
evaluation results, especially with respect to queueing and packet loss under high
loads.

The world wide web is especially interesting in terms of workload modeling
because the workloads seen at the two ends of a connection are quite different.
First, there is the many-to-many mapping of clients to servers. A given client only
interacts with a limited number of servers, whereas the population as a whole may
interact with many more servers and display different statistics. Servers, in contrast,
typically interact with many clients at a time, so the statistics they see are closer to
the population statistics than to the statistics of a single client. In addition, caching
by proxies modifies the stream of requests en route [270, 265]. The stream between a
client and a cache has more repetitions than the stream from the cache to the server.
Uncacheable objects may also be expected to be more prevalent between the cache
and the server than between the clients and the cache, because in the latter case they
are intermixed with more cacheable objects.

1.2.2 Dynamic vs. Static Workloads

An important difference between workload types is their rate of events. A desktop
machine used by a single user may process several hundreds of commands per day.
This may correspond to thousands or millions of I/O operations and to many billions
of CPU instructions and memory accesses. A large-scale parallel supercomputer
may serve only several hundred jobs a day from all users combined. A router on the
Internet may handle billions of packets in the same time frame.

Note that in this discussion we talk of rates rather than sizes. A size implies
that something is absolute and finite. A rate is a size per unit of time and implies
continuity. This is related to the distinction between static and dynamic workloads.
A static workload is one in which a certain amount of work is given, and when it is
done that is it. A dynamic workload, in contrast, is one in which work continues to
arrive all the time; it is never “done.”

The differences between static and dynamic workloads may have the following
subtle implications for performance evaluation.

� A dynamic workload requires the performance evaluator to create a changing
mix of workload items (e.g., jobs). At the very minimum, doing so requires
an identification of all possible jobs and data regarding the popularity of each
one, which may not be available. With static workloads you can use several
combinations of a small set of given applications. For example, given applications
A, B, and C, you can run three copies of each in isolation or a combination of one
job from each type. This is much simpler, but most probably further from being
realistic. Benchmarks (discussed in the next section) are often static.

� A major difficulty with dynamic workloads is that they include an arrival process,
which has to be characterized and analyzed in addition to the workload items
themselves. A static workload does not impose this additional burden. Instead,
it is assumed that all the work arrives at once at the outset.
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8 Introduction

� Distributions describing static or dynamic workloads may differ. For example, a
snapshot of a running system may be quite different from a sample of the input
distribution, due to correlations of workload attributes with residence time. Thus
if the input includes many short jobs and few long jobs, sampling from a trace of
all the jobs that were executed on the system (effectively sampling from the input
distribution) will display a significant advantage for short jobs. But observing a
snapshot of the live system may indicate that long jobs are more common, simply
because they stay in the system longer and therefore have a higher probability of
being seen in a random sample.

� Perhaps the most important difference occurs because performance often
depends on the system’s state. A static workload being processed by a “clean”
system may be very different from the same set of jobs being processed by a
system that had previously processed many other jobs in a dynamic manner. The
reason is system aging (e.g., the fragmentation of resources) [638].

� Aging is especially important when working on age-related failures (e.g., those
due to memory leaks). Static workloads are incapable of supporting work on
topics such as software rejuvenation [691]. A related example is the study of
thrashing in paging systems [173]. Such effects cannot be seen when studying
the page replacement of a single application with a fixed allocation. Rather, they
only occur due to the dynamic interaction of multiple competing applications.

Several of these considerations indicate that static workloads cannot be consid-
ered as valid samples of real dynamic workloads. This book focuses on dynamic
workloads.

1.2.3 Benchmarks

One of the important uses of performance evaluation is to compare different systems
to each other, typically when trying to decide which to buy. However, such compar-
isons are meaningful only if the systems are evaluated under equivalent conditions
and, in particular, with the same workload. This motivates the canonization of a
select set of workloads that are then ported to different systems and used as the
basis for comparison. Such standardized workloads are called benchmarks.

Benchmarks have a huge impact on the computer industry, because they are often
used in marketing campaigns [722]. Moreover, they are also used in performance
evaluation during the design of new systems and even in academic research, so their
properties (and deficiencies) may shape the direction of new developments. It is thus
of crucial importance that benchmarks be representative of real needs. To ensure
the combination of representativeness and industry consensus, several independent
benchmarking organizations have been created. Two of the best known are SPEC
and TPC.

SPEC is the Systems Performance Evaluation Consortium [654]. This organiza-
tion defines several benchmark suites aimed at evaluating computer systems. The
most important of these suites is SPEC CPU, which dominates the field of evaluating
the microarchitecture of computer processors. This benchmark comprises a set of
applications divided into two groups: one emphasizing integer and symbolic process-
ing, and the other emphasizing floating point scientific processing. To ensure that
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1.2 Types of Workloads 9

the benchmark is representative of current needs, the set of applications is replaced
every few years. New applications are selected from those submitted in an open
competition.

TPC is the Transaction Processing Performance Council. This organization
defines several benchmarks for evaluating database systems. Perhaps the most com-
monly used is TPC-C, which is used to evaluate online transaction processing. The
benchmark simulates an environment in which sales clerks execute transactions at a
warehouse. The simulation has to comply with realistic assumptions regarding how
quickly human users can enter information.

The SPEC CPU suite and TPC-C are essentially complete, real applications.
Other benchmarks are composed of kernels or of synthetic applications. Both of
these approaches reduce realism in the interest of economy or focus on specific
aspects of the system. Kernels are small parts of applications in which most of the
processing occurs (e.g., the inner loops of scientific applications). Their measure-
ment focuses on the performance of the processor in the most intensive part of the
computation. Synthetic applications mimic the behavior of real applications with-
out actually computing anything useful. Using them enables the measurement of
distinct parts of the system in isolation or in carefully regulated mixtures; this is
often facilitated by parameterizing the synthetic application, with parameter values
governing various aspects of the program’s behavior (e.g., the ratio of computation
to I/O) [93]. Taking this to the extreme, microbenchmarks are small synthetic pro-
grams designed to measure a single system feature, such as memory bandwidth or
the overhead to access a file. In this case there is no pretense of being representative
of real workloads.

Benchmarking is often a contentious affair. Much argument and discussion are
spent on methodological issues, as vendors contend to promote features that will
show their systems in a favorable light. There is also the problem of the benchmark
becoming an end in itself, when vendors optimize their systems to cater to the bench-
mark, at the possible expense of other application types. It is therefore especially
important to define what the benchmark is supposed to capture. There are two main
options: to span the spectrum of possible workloads or to be representative of real
workloads.

Covering the space of possible workloads is useful for basic scientific insights
and when confronted with completely new systems. In designing such benchmarks,
workload attributes have to be identified and quantified, and then combinations
of realistic values are used. The goal is to choose attributes and values that cover
all important options, but without undue redundancy [193, 387]. The problem with
this approach is that, by definition, it only measures what the benchmark designers
dreamed up in advance. In other words, there is no guarantee that the benchmarks
indeed cover all possibilities.

The other approach requires that benchmarks reflect real usage and be repre-
sentative of real workloads. To ensure that this is the case, workloads have to be
analyzed and modeled. This should be done with considerable care and an eye to
detail. For example, when designing a benchmark for CPUs, it is not enough to con-
sider the instruction mix and their interdependencies – it is also necessary to consider
the interaction of the benchmark with the memory hierarchy, as well as its working
set size.
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10 Introduction

Although benchmarks are not discussed in detail in this book, the methodologies
covered are expected to be useful as background for the definition of benchmarks.

To read more: Two surveys on benchmarks were written by Weicker [723, 722]. One
of the reasons they are interesting is that they show how benchmarks change over
time.

1.3 WORKLOAD MODELING

Workload modeling is the attempt to create a simple and general model, which
can then be used to generate synthetic workloads at will, possibly with slight (but
well-controlled!) modifications. The goal is typically to be able to create workloads
that can be used in performance evaluation studies, and the synthetic workload
is supposed to be similar to those that occur in practice on real systems. This is a
generalization of the concept of benchmarks, which is applicable when the consensus
regarding the precise workload is less important.

1.3.1 What It Is

Workload modeling always starts with measured data about the workload. This data
is often recorded as a trace, or log, of workload-related events that happened in a
certain system. For example, a job log may include data about the arrival times of
jobs, who ran them, and how many resources they required. Basing evaluations on
such observations, rather than on baseless assumptions, is a basic principle of the
scientific method.

The suggestion that workload modeling should be based on measurements has
been made at least since the 1970s [256, 653, 19]. However, for a long time relatively
few models based on actual measurements were published. As a result, many per-
formance studies did not use experimental workload models at all (and do not to
this day). The current wave of using measurements to create detailed and sophisti-
cated models started in the 1990s. It was based on two observations: one, that real
workloads tend to differ from those often assumed in mathematical analyses, and
two, that this makes a difference.

There are two common ways to use a measured workload to analyze or evaluate
a system design [127, 256, 611]:

1. Use the traced workload directly to drive a simulation.
2. Create a model from the trace and use the model for either analysis or

simulation.

For example, trace-driven simulations based on large address traces are often used to
evaluate cache designs [634, 409, 400, 704]. But models of how applications traverse
their address space have also been proposed and provide interesting insights into
program behavior [682, 683].

The essence of modeling, as opposed to just observing and recording, is one of
abstraction. This means two things: generalization and simplification.

Measurements are inherently limited. Collecting data may be inconvenient or
costly, and instrumentation may introduce overhead. The conditions under which
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