Contents

List of Symbols xi
Acknowledgments xiii

1 A Brief History 1
1.1 Pre-1820: The Two Subjects of Electricity and Magnetism 1
1.2 1820–1861: The Experimental Glory Days of Electricity and Magnetism 2
1.3 Maxwell and His Four Equations 2
1.4 Einstein and the Special Theory of Relativity 2
1.5 Quantum Mechanics and Photons 3
1.6 Gauge Theories for Physicists: The Standard Model 4
1.7 Four-Manifolds 5
1.8 This Book 7
1.9 Some Sources 7

2 Maxwell’s Equations 9
2.1 A Statement of Maxwell’s Equations 9
2.2 Other Versions of Maxwell’s Equations 12
2.2.1 Some Background in Nabla 12
2.2.2 Nabla and Maxwell 14
2.3 Exercises 14

3 Electromagnetic Waves 17
3.1 The Wave Equation 17
3.2 Electromagnetic Waves 20
3.3 The Speed of Electromagnetic Waves Is Constant 21
3.3.1 Intuitive Meaning 21
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.2</td>
<td>Changing Coordinates for the Wave Equation 22</td>
</tr>
<tr>
<td>3.4</td>
<td>Exercises 25</td>
</tr>
<tr>
<td>4</td>
<td>Special Relativity 27</td>
</tr>
<tr>
<td>4.1</td>
<td>Special Theory of Relativity 27</td>
</tr>
<tr>
<td>4.2</td>
<td>Clocks and Rulers 28</td>
</tr>
<tr>
<td>4.3</td>
<td>Galilean Transformations 31</td>
</tr>
<tr>
<td>4.4</td>
<td>Lorentz Transformations 32</td>
</tr>
<tr>
<td>4.4.1</td>
<td>A Heuristic Approach 32</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Lorentz Contractions and Time Dilations 35</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Proper Time 36</td>
</tr>
<tr>
<td>4.4.4</td>
<td>The Special Relativity Invariant 37</td>
</tr>
<tr>
<td>4.4.5</td>
<td>Lorentz Transformations, the Minkowski Metric, and Relativistic Displacement 38</td>
</tr>
<tr>
<td>4.5</td>
<td>Velocity and Lorentz Transformations 43</td>
</tr>
<tr>
<td>4.6</td>
<td>Acceleration and Lorentz Transformations 45</td>
</tr>
<tr>
<td>4.7</td>
<td>Relativistic Momentum 46</td>
</tr>
<tr>
<td>4.8</td>
<td>Appendix: Relativistic Mass 48</td>
</tr>
<tr>
<td>4.8.1</td>
<td>Mass and Lorentz Transformations 48</td>
</tr>
<tr>
<td>4.8.2</td>
<td>More General Changes in Mass 51</td>
</tr>
<tr>
<td>4.9</td>
<td>Exercises 52</td>
</tr>
<tr>
<td>5</td>
<td>Mechanics and Maxwell’s Equations 56</td>
</tr>
<tr>
<td>5.1</td>
<td>Newton’s Three Laws 56</td>
</tr>
<tr>
<td>5.2</td>
<td>Forces for Electricity and Magnetism 58</td>
</tr>
<tr>
<td>5.2.1</td>
<td>$F = q(E + v \times B)$ 58</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Coulomb’s Law 59</td>
</tr>
<tr>
<td>5.3</td>
<td>Force and Special Relativity 60</td>
</tr>
<tr>
<td>5.3.1</td>
<td>The Special Relativistic Force 60</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Force and Lorentz Transformations 61</td>
</tr>
<tr>
<td>5.4</td>
<td>Coulomb + Special Relativity + Charge Conservation = Magnetism 62</td>
</tr>
<tr>
<td>5.5</td>
<td>Exercises 65</td>
</tr>
<tr>
<td>6</td>
<td>Mechanics, Lagrangians, and the Calculus of Variations 70</td>
</tr>
<tr>
<td>6.1</td>
<td>Overview of Lagrangians and Mechanics 70</td>
</tr>
<tr>
<td>6.2</td>
<td>Calculus of Variations 71</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Basic Framework 71</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Euler-Lagrange Equations 73</td>
</tr>
<tr>
<td>6.2.3</td>
<td>More Generalized Calculus of Variations Problems 77</td>
</tr>
<tr>
<td>6.3</td>
<td>A Lagrangian Approach to Newtonian Mechanics 78</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>6.4</td>
<td>Conservation of Energy from Lagrangians</td>
</tr>
<tr>
<td>6.5</td>
<td>Noether’s Theorem and Conservation Laws</td>
</tr>
<tr>
<td>6.6</td>
<td>Exercises</td>
</tr>
<tr>
<td>7</td>
<td>Potentials</td>
</tr>
<tr>
<td>7.1</td>
<td>Using Potentials to Create Solutions for Maxwell’s Equations</td>
</tr>
<tr>
<td>7.2</td>
<td>Existence of Potentials</td>
</tr>
<tr>
<td>7.3</td>
<td>Ambiguity in the Potential</td>
</tr>
<tr>
<td>7.4</td>
<td>Appendix: Some Vector Calculus</td>
</tr>
<tr>
<td>7.5</td>
<td>Exercises</td>
</tr>
<tr>
<td>8</td>
<td>Lagrangians and Electromagnetic Forces</td>
</tr>
<tr>
<td>8.1</td>
<td>Desired Properties for the Electromagnetic Lagrangian</td>
</tr>
<tr>
<td>8.2</td>
<td>The Electromagnetic Lagrangian</td>
</tr>
<tr>
<td>8.3</td>
<td>Exercises</td>
</tr>
<tr>
<td>9</td>
<td>Differential Forms</td>
</tr>
<tr>
<td>9.1</td>
<td>The Vector Spaces $\Lambda^k(\mathbb{R}^n)$</td>
</tr>
<tr>
<td>9.1.1</td>
<td>A First Pass at the Definition</td>
</tr>
<tr>
<td>9.1.2</td>
<td>Functions as Coefficients</td>
</tr>
<tr>
<td>9.1.3</td>
<td>The Exterior Derivative</td>
</tr>
<tr>
<td>9.2</td>
<td>Tools for Measuring</td>
</tr>
<tr>
<td>9.2.1</td>
<td>Curves in \mathbb{R}^3</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Surfaces in \mathbb{R}^3</td>
</tr>
<tr>
<td>9.2.3</td>
<td>k-manifolds in \mathbb{R}^n</td>
</tr>
<tr>
<td>9.3</td>
<td>Exercises</td>
</tr>
<tr>
<td>10</td>
<td>The Hodge \star Operator</td>
</tr>
<tr>
<td>10.1</td>
<td>The Exterior Algebra and the \star Operator</td>
</tr>
<tr>
<td>10.2</td>
<td>Vector Fields and Differential Forms</td>
</tr>
<tr>
<td>10.3</td>
<td>The \star Operator and Inner Products</td>
</tr>
<tr>
<td>10.4</td>
<td>Inner Products on $\Lambda(\mathbb{R}^n)$</td>
</tr>
<tr>
<td>10.5</td>
<td>The \star Operator with the Minkowski Metric</td>
</tr>
<tr>
<td>10.6</td>
<td>Exercises</td>
</tr>
<tr>
<td>11</td>
<td>The Electromagnetic Two-Form</td>
</tr>
<tr>
<td>11.1</td>
<td>The Electromagnetic Two-Form</td>
</tr>
<tr>
<td>11.2</td>
<td>Maxwell’s Equations via Forms</td>
</tr>
<tr>
<td>11.3</td>
<td>Potentials</td>
</tr>
<tr>
<td>11.4</td>
<td>Maxwell’s Equations via Lagrangians</td>
</tr>
<tr>
<td>11.5</td>
<td>Euler-Lagrange Equations for the Electromagnetic Lagrangian</td>
</tr>
<tr>
<td>11.6</td>
<td>Exercises</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Some Mathematics Needed for Quantum Mechanics</td>
<td>142</td>
</tr>
<tr>
<td>12.1</td>
<td>Hilbert Spaces</td>
<td>142</td>
</tr>
<tr>
<td>12.2</td>
<td>Hermitian Operators</td>
<td>149</td>
</tr>
<tr>
<td>12.3</td>
<td>The Schwartz Space</td>
<td>153</td>
</tr>
<tr>
<td>12.3.1</td>
<td>The Definition</td>
<td>153</td>
</tr>
<tr>
<td>12.3.2</td>
<td>The Operators $q(f) = xf$ and $p(f) = -i\frac{df}{dx}$</td>
<td>155</td>
</tr>
<tr>
<td>12.3.3</td>
<td>$\mathcal{S}(\mathbb{R})$ Is Not a Hilbert Space</td>
<td>157</td>
</tr>
<tr>
<td>12.4</td>
<td>Caveats: On Lebesgue Measure, Types of Convergence, and Different Bases</td>
<td>159</td>
</tr>
<tr>
<td>12.5</td>
<td>Exercises</td>
<td>160</td>
</tr>
<tr>
<td>13</td>
<td>Some Quantum Mechanical Thinking</td>
<td>163</td>
</tr>
<tr>
<td>13.1</td>
<td>The Photoelectric Effect: Light as Photons</td>
<td>163</td>
</tr>
<tr>
<td>13.2</td>
<td>Some Rules for Quantum Mechanics</td>
<td>164</td>
</tr>
<tr>
<td>13.3</td>
<td>Quantization</td>
<td>170</td>
</tr>
<tr>
<td>13.4</td>
<td>Warnings of Subtleties</td>
<td>172</td>
</tr>
<tr>
<td>13.5</td>
<td>Exercises</td>
<td>172</td>
</tr>
<tr>
<td>14</td>
<td>Quantum Mechanics of Harmonic Oscillators</td>
<td>176</td>
</tr>
<tr>
<td>14.1</td>
<td>The Classical Harmonic Oscillator</td>
<td>176</td>
</tr>
<tr>
<td>14.2</td>
<td>The Quantum Harmonic Oscillator</td>
<td>179</td>
</tr>
<tr>
<td>14.3</td>
<td>Exercises</td>
<td>184</td>
</tr>
<tr>
<td>15</td>
<td>Quantizing Maxwell’s Equations</td>
<td>186</td>
</tr>
<tr>
<td>15.1</td>
<td>Our Approach</td>
<td>186</td>
</tr>
<tr>
<td>15.2</td>
<td>The Coulomb Gauge</td>
<td>187</td>
</tr>
<tr>
<td>15.3</td>
<td>The “Hidden” Harmonic Oscillator</td>
<td>193</td>
</tr>
<tr>
<td>15.4</td>
<td>Quantization of Maxwell’s Equations</td>
<td>195</td>
</tr>
<tr>
<td>15.5</td>
<td>Exercises</td>
<td>197</td>
</tr>
<tr>
<td>16</td>
<td>Manifolds</td>
<td>201</td>
</tr>
<tr>
<td>16.1</td>
<td>Introduction to Manifolds</td>
<td>201</td>
</tr>
<tr>
<td>16.1.1</td>
<td>Force = Curvature</td>
<td>201</td>
</tr>
<tr>
<td>16.1.2</td>
<td>Intuitions behind Manifolds</td>
<td>201</td>
</tr>
<tr>
<td>16.2</td>
<td>Manifolds Embedded in \mathbb{R}^n</td>
<td>203</td>
</tr>
<tr>
<td>16.2.1</td>
<td>Parametric Manifolds</td>
<td>203</td>
</tr>
<tr>
<td>16.2.2</td>
<td>Implicitly Defined Manifolds</td>
<td>205</td>
</tr>
<tr>
<td>16.3</td>
<td>Abstract Manifolds</td>
<td>206</td>
</tr>
<tr>
<td>16.3.1</td>
<td>Definition</td>
<td>206</td>
</tr>
<tr>
<td>16.3.2</td>
<td>Functions on a Manifold</td>
<td>212</td>
</tr>
<tr>
<td>16.4</td>
<td>Exercises</td>
<td>212</td>
</tr>
</tbody>
</table>
Contents

17 Vector Bundles 214
17.1 Intuitions 214
17.2 Technical Definitions 216
17.2.1 The Vector Space \mathbb{R}^k 216
17.2.2 Definition of a Vector Bundle 216
17.3 Principal Bundles 219
17.4 Cylinders and Möbius Strips 220
17.5 Tangent Bundles 222
17.5.1 Intuitions 222
17.5.2 Tangent Bundles for Parametrically Defined Manifolds 224
17.5.3 $T(\mathbb{R}^2)$ as Partial Derivatives 225
17.5.4 Tangent Space at a Point of an Abstract Manifold 227
17.5.5 Tangent Bundles for Abstract Manifolds 228
17.6 Exercises 230

18 Connections 232
18.1 Intuitions 232
18.2 Technical Definitions 233
18.2.1 Operator Approach 233
18.2.2 Connections for Trivial Bundles 237
18.3 Covariant Derivatives of Sections 240
18.4 Parallel Transport: Why Connections Are Called Connections 243
18.5 Appendix: Tensor Products of Vector Spaces 247
18.5.1 A Concrete Description 247
18.5.2 Alternating Forms as Tensors 248
18.5.3 Homogeneous Polynomials as Symmetric Tensors 250
18.5.4 Tensors as Linearizations of Bilinear Maps 251
18.6 Exercises 253

19 Curvature 257
19.1 Motivation 257
19.2 Curvature and the Curvature Matrix 258
19.3 Deriving the Curvature Matrix 260
19.4 Exercises 261

20 Maxwell via Connections and Curvature 263
20.1 Maxwell in Some of Its Guises 263
20.2 Maxwell for Connections and Curvature 264
20.3 Exercises 266
21 The Lagrangian Machine, Yang-Mills, and Other Forces 267
 21.1 The Lagrangian Machine 267
 21.2 U(1) Bundles 268
 21.3 Other Forces 269
 21.4 A Dictionary 270
 21.5 Yang-Mills Equations 272

Bibliography 275
Index 279

Color plates follow page 215