
1 Data Mining

In this intoductory chapter we begin with the essence of data mining and a

discussion of how data mining is treated by the various disciplines that con-

tribute to this field. We cover “Bonferroni’s Principle,” which is really a warning

about overusing the ability to mine data. This chapter is also the place where

we summarize a few useful ideas that are not data mining but are useful in un-

derstanding some important data-mining concepts. These include the TF.IDF

measure of word importance, behavior of hash functions and indexes, and iden-

tities involving e, the base of natural logarithms. Finally, we give an outline of

the topics covered in the balance of the book.

1.1 What is Data Mining?

The most commonly accepted definition of “data mining” is the discovery of

“models” for data. A “model,” however, can be one of several things. We mention

below the most important directions in modeling.

1.1.1 Statistical Modeling

Statisticians were the first to use the term “data mining.” Originally, “data

mining” or “data dredging” was a derogatory term referring to attempts to

extract information that was not supported by the data. Section 1.2 illustrates

the sort of errors one can make by trying to extract what really isn’t in the data.

Today, “data mining” has taken on a positive meaning. Now, statisticians view

data mining as the construction of a statistical model, that is, an underlying

distribution from which the visible data is drawn.

example 1.1 Suppose our data is a set of numbers. This data is much simpler

than data that would be data-mined, but it will serve as an example. A statis-

tician might decide that the data comes from a Gaussian distribution and use

a formula to compute the most likely parameters of this Gaussian. The mean

and standard deviation of this Gaussian distribution completely characterize the

distribution and would become the model of the data. �

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-07723-2 - Mining of Massive Datasets: Second Edition
Jure Leskovec, Anand Rajaraman and Jeffrey David Ullman
Excerpt
More information

http://www.cambridge.org/9781107077232
http://www.cambridge.org
http://www.cambridge.org


2 Data Mining

1.1.2 Machine Learning

There are some who regard data mining as synonymous with machine learning.

There is no question that some data mining appropriately uses algorithms from

machine learning. Machine-learning practitioners use the data as a training set,

to train an algorithm of one of the many types used by machine-learning prac-

titioners, such as Bayes nets, support-vector machines, decision trees, hidden

Markov models, and many others.

There are situations where using data in this way makes sense. The typical

case where machine learning is a good approach is when we have little idea of

what we are looking for in the data. For example, it is rather unclear what it is

about movies that makes certain movie-goers like or dislike it. Thus, in answering

the “Netflix challenge” to devise an algorithm that predicts the ratings of movies

by users, based on a sample of their responses, machine-learning algorithms have

proved quite successful. We shall discuss a simple form of this type of algorithm

in Section 9.4.

On the other hand, machine learning has not proved successful in situations

where we can describe the goals of the mining more directly. An interesting case

in point is the attempt by WhizBang! Labs1 to use machine learning to locate

people’s resumes on the Web. It was not able to do better than algorithms

designed by hand to look for some of the obvious words and phrases that appear

in the typical resume. Since everyone who has looked at or written a resume has

a pretty good idea of what resumes contain, there was no mystery about what

makes a Web page a resume. Thus, there was no advantage to machine-learning

over the direct design of an algorithm to discover resumes.

1.1.3 Computational Approaches to Modeling

More recently, computer scientists have looked at data mining as an algorithmic

problem. In this case, the model of the data is simply the answer to a complex

query about it. For instance, given the set of numbers of Example 1.1, we might

compute their average and standard deviation. Note that these values might not

be the parameters of the Gaussian that best fits the data, although they will

almost certainly be very close if the size of the data is large.

There are many different approaches to modeling data. We have already men-

tioned the possibility of constructing a statistical process whereby the data could

have been generated. Most other approaches to modeling can be described as ei-

ther

(1) summarizing the data succinctly and approximately, or

(2) extracting the most prominent features of the data and ignoring the rest.

We shall explore these two approaches in the following sections.

1 This startup attempted to use machine learning to mine large-scale data, and hired many
of the top machine-learning people to do so. Unfortunately, it was not able to survive.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-07723-2 - Mining of Massive Datasets: Second Edition
Jure Leskovec, Anand Rajaraman and Jeffrey David Ullman
Excerpt
More information

http://www.cambridge.org/9781107077232
http://www.cambridge.org
http://www.cambridge.org


1.1 What is Data Mining? 3

1.1.4 Summarization

One of the most interesting forms of summarization is the PageRank idea, which

made Google successful and which we shall cover in Chapter 5. In this form of

Web mining, the entire complex structure of the Web is summarized by a single

number for each page. This number, the “PageRank” of the page, is (oversimpli-

fying somewhat) the probability that a random walker on the graph would be at

that page at any given time. The remarkable property this ranking has is that

it reflects very well the “importance” of the page – the degree to which typical

searchers would like that page returned as an answer to their search query.

Another important form of summary – clustering – will be covered in Chap-

ter 7. Here, data is viewed as points in a multidimensional space. Points that are

“close” in this space are assigned to the same cluster. The clusters themselves are

summarized, perhaps by giving the centroid of the cluster and the average dis-

tance from the centroid of points in the cluster. These cluster summaries become

the summary of the entire data set.

example 1.2 A famous instance of clustering to solve a problem took place

long ago in London, and it was done entirely without computers.2 The physician

John Snow, dealing with a cholera outbreak plotted the cases on a map of the

city. A small illustration suggesting the process is shown in Fig. 1.1.

Figure 1.1 Plotting cholera cases on a map of London

The cases clustered around some of the intersections of roads. These inter-

sections were the locations of wells that had become contaminated; people who

lived nearest these wells got sick, while people who lived nearer to wells that had

not been contaminated did not. Without the ability to cluster the data, Snow

would not have discovered the cause of cholera. �

2 See http://en.wikipedia.org/wiki/1854 Broad Street cholera outbreak.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-07723-2 - Mining of Massive Datasets: Second Edition
Jure Leskovec, Anand Rajaraman and Jeffrey David Ullman
Excerpt
More information

http://www.cambridge.org/9781107077232
http://www.cambridge.org
http://www.cambridge.org


4 Data Mining

1.1.5 Feature Extraction

The typical feature-based model looks for the most extreme examples of a phe-

nomenon and represents the data by these examples. If you are familiar with

Bayes nets, a branch of machine learning and a topic we do not cover in this

book, you know how a complex relationship between objects is represented by

finding the strongest statistical dependencies among these objects and using only

those in representing all statistical connections. Some of the important kinds of

feature extraction from large-scale data that we shall study are:

(1) Frequent Itemsets. This model makes sense for data that consists of “baskets”

of small sets of items, as in the market-basket problem that we shall discuss

in Chapter 6. We look for small sets of items that appear together in many

baskets, and these “frequent itemsets” are the characterization of the data

that we seek. The original application of this sort of mining was true market

baskets: the sets of items, such as hamburger and ketchup, that people tend

to buy together when checking out at the cash register of a store or super

market.

(2) Similar Items. Often, your data looks like a collection of sets, and the ob-

jective is to find pairs of sets that have a relatively large fraction of their

elements in common. An example is treating customers at an on-line store

like Amazon as the set of items they have bought. In order for Amazon

to recommend something else they might like, Amazon can look for “sim-

ilar” customers and recommend something many of these customers have

bought. This process is called “collaborative filtering.” If customers were

single-minded – that is, they bought only one kind of thing – then clustering

customers might work. However, since customers tend to have interests in

many different things, it is more useful to find, for each customer, a small

number of other customers who are similar in their tastes, and represent the

data by these connections. We discuss similarity in Chapter 3.

1.2 Statistical Limits on Data Mining

A common sort of data-mining problem involves discovering unusual events hid-

den within massive amounts of data. This section is a discussion of the problem,

including “Bonferroni’s Principle,” a warning against overzealous use of data

mining.

1.2.1 Total Information Awareness

In 2002, the Bush administration put forward a plan to mine all the data it

could find, including credit-card receipts, hotel records, travel data, and many

other kinds of information in order to track terrorist activity. This idea naturally

caused great concern among privacy advocates, and the project, called TIA, or

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-07723-2 - Mining of Massive Datasets: Second Edition
Jure Leskovec, Anand Rajaraman and Jeffrey David Ullman
Excerpt
More information

http://www.cambridge.org/9781107077232
http://www.cambridge.org
http://www.cambridge.org


1.2 Statistical Limits on Data Mining 5

Total Information Awareness, was eventually killed by Congress, although it is

unclear whether the project in fact exists under another name. It is not the

purpose of this book to discuss the difficult issue of the privacy-security tradeoff.

However, the prospect of TIA or a system like it does raise technical questions

about its feasibility and the realism of its assumptions.

The concern raised by many is that if you look at so much data, and you try

to find within it activities that look like terrorist behavior, are you not going to

find many innocent activities – or even illicit activities that are not terrorism –

that will result in visits from the police and maybe worse than just a visit? The

answer is that it all depends on how narrowly you define the activities that you

look for. Statisticians have seen this problem in many guises and have a theory,

which we introduce in the next section.

1.2.2 Bonferroni’s Principle

Suppose you have a certain amount of data, and you look for events of a certain

type within that data. You can expect events of this type to occur, even if the data

is completely random, and the number of occurrences of these events will grow as

the size of the data grows. These occurrences are “bogus,” in the sense that they

have no cause other than that random data will always have some number of

unusual features that look significant but aren’t. A theorem of statistics, known

as the Bonferroni correction gives a statistically sound way to avoid most of these

bogus positive responses to a search through the data. Without going into the

statistical details, we offer an informal version, Bonferroni’s principle, that helps

us avoid treating random occurrences as if they were real. Calculate the expected

number of occurrences of the events you are looking for, on the assumption that

data is random. If this number is significantly larger than the number of real

instances you hope to find, then you must expect almost anything you find to

be bogus, i.e., a statistical artifact rather than evidence of what you are looking

for. This observation is the informal statement of Bonferroni’s principle.

In a situation like searching for terrorists, where we expect that there are few

terrorists operating at any one time, Bonferroni’s principle says that we may

only detect terrorists by looking for events that are so rare that they are unlikely

to occur in random data. We shall give an extended example in the next section.

1.2.3 An Example of Bonferroni’s Principle

Suppose there are believed to be some “evil-doers” out there, and we want to

detect them. Suppose further that we have reason to believe that periodically,

evil-doers gather at a hotel to plot their evil. Let us make the following assump-

tions about the size of the problem:

(1) There are one billion people who might be evil-doers.

(2) Everyone goes to a hotel one day in 100.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-07723-2 - Mining of Massive Datasets: Second Edition
Jure Leskovec, Anand Rajaraman and Jeffrey David Ullman
Excerpt
More information

http://www.cambridge.org/9781107077232
http://www.cambridge.org
http://www.cambridge.org


6 Data Mining

(3) A hotel holds 100 people. Hence, there are 100,000 hotels – enough to hold

the 1% of a billion people who visit a hotel on any given day.

(4) We shall examine hotel records for 1000 days.

To find evil-doers in this data, we shall look for people who, on two different

days, were both at the same hotel. Suppose, however, that there really are no

evil-doers. That is, everyone behaves at random, deciding with probability 0.01

to visit a hotel on any given day, and if so, choosing one of the 105 hotels at

random. Would we find any pairs of people who appear to be evil-doers?

We can do a simple approximate calculation as follows. The probability of any

two people both deciding to visit a hotel on any given day is .0001. The chance

that they will visit the same hotel is this probability divided by 105, the number

of hotels. Thus, the chance that they will visit the same hotel on one given day

is 10−9. The chance that they will visit the same hotel on two different given

days is the square of this number, 10−18. Note that the hotels can be different

on the two days.

Now, we must consider how many events will indicate evil-doing. An “event”

in this sense is a pair of people and a pair of days, such that the two people were

at the same hotel on each of the two days. To simplify the arithmetic, note that

for large n,
(
n
2

)
is about n2/2. We shall use this approximation in what follows.

Thus, the number of pairs of people is
(
109

2

)
= 5× 1017. The number of pairs of

days is
(
1000
2

)
= 5× 105. The expected number of events that look like evil-doing

is the product of the number of pairs of people, the number of pairs of days, and

the probability that any one pair of people and pair of days is an instance of the

behavior we are looking for. That number is

5× 1017 × 5× 105 × 10−18 = 250, 000

That is, there will be a quarter of a million pairs of people who look like evil-

doers, even though they are not.

Now, suppose there really are 10 pairs of evil-doers out there. The police will

need to investigate a quarter of a million other pairs in order to find the real evil-

doers. In addition to the intrusion on the lives of half a million innocent people,

the work involved is sufficiently great that this approach to finding evil-doers is

probably not feasible.

1.2.4 Exercises for Section 1.2

exercise 1.2.1 Using the information from Section 1.2.3, what would be the

number of suspected pairs if the following changes were made to the data (and

all other numbers remained as they were in that section)?

(a) The number of days of observation was raised to 2000.

(b) The number of people observed was raised to 2 billion (and there were there-

fore 200,000 hotels).

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-07723-2 - Mining of Massive Datasets: Second Edition
Jure Leskovec, Anand Rajaraman and Jeffrey David Ullman
Excerpt
More information

http://www.cambridge.org/9781107077232
http://www.cambridge.org
http://www.cambridge.org


1.3 Things Useful to Know 7

(c) We only reported a pair as suspect if they were at the same hotel at the

same time on three different days.

! exercise 1.2.2 Suppose we have information about the supermarket pur-

chases of 100 million people. Each person goes to the supermarket 100 times

in a year and buys 10 of the 1000 items that the supermarket sells. We believe

that a pair of terrorists will buy exactly the same set of 10 items (perhaps the

ingredients for a bomb?) at some time during the year. If we search for pairs of

people who have bought the same set of items, would we expect that any such

people found were truly terrorists?3

1.3 Things Useful to Know

In this section, we offer brief introductions to subjects that you may or may not

have seen in your study of other courses. Each will be useful in the study of data

mining. They include:

(1) The TF.IDF measure of word importance.

(2) Hash functions and their use.

(3) Secondary storage (disk) and its effect on running time of algorithms.

(4) The base e of natural logarithms and identities involving that constant.

(5) Power laws.

1.3.1 Importance of Words in Documents

In several applications of data mining, we shall be faced with the problem of

categorizing documents (sequences of words) by their topic. Typically, topics are

identified by finding the special words that characterize documents about that

topic. For instance, articles about baseball would tend to have many occurrences

of words like “ball,” “bat,” “pitch,”, “run,” and so on. Once we have classified

documents to determine they are about baseball, it is not hard to notice that

words such as these appear unusually frequently. However, until we have made

the classification, it is not possible to identify these words as characteristic.

Thus, classification often starts by looking at documents, and finding the sig-

nificant words in those documents. Our first guess might be that the words ap-

pearing most frequently in a document are the most significant. However, that

intuition is exactly opposite of the truth. The most frequent words will most

surely be the common words such as “the” or “and,” which help build ideas

but do not carry any significance themselves. In fact, the several hundred most

common words in English (called stop words) are often removed from documents

before any attempt to classify them.

3 That is, assume our hypothesis that terrorists will surely buy a set of 10 items in common
at some time during the year. We don’t want to address the matter of whether or not
terrorists would necessarily do so.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-07723-2 - Mining of Massive Datasets: Second Edition
Jure Leskovec, Anand Rajaraman and Jeffrey David Ullman
Excerpt
More information

http://www.cambridge.org/9781107077232
http://www.cambridge.org
http://www.cambridge.org


8 Data Mining

In fact, the indicators of the topic are relatively rare words. However, not all

rare words are equally useful as indicators. There are certain words, for example

“notwithstanding” or “albeit,” that appear rarely in a collection of documents,

yet do not tell us anything useful. On the other hand, a word like “chukker”

is probably equally rare, but tips us off that the document is about the sport

of polo. The difference between rare words that tell us something and those

that do not has to do with the concentration of the useful words in just a few

documents. That is, the presence of a word like “albeit” in a document does not

make it terribly more likely that it will appear multiple times. However, if an

article mentions “chukker” once, it is likely to tell us what happened in the “first

chukker,” then the “second chukker,” and so on. That is, the word is likely to

be repeated if it appears at all.

The formal measure of how concentrated into relatively few documents are

the occurrences of a given word is called TF.IDF (Term Frequency times Inverse

Document Frequency). It is normally computed as follows. Suppose we have a

collection ofN documents. Define fij to be the frequency (number of occurrences)

of term (word) i in document j. Then, define the term frequency TFij to be:

TFij =
fij

maxk fkj

That is, the term frequency of term i in document j is fij normalized by dividing

it by the maximum number of occurrences of any term (perhaps excluding stop

words) in the same document. Thus, the most frequent term in document j gets a

TF of 1, and other terms get fractions as their term frequency for this document.

The IDF for a term is defined as follows. Suppose term i appears in ni of

the N documents in the collection. Then IDFi = log2(N/ni). The TF.IDF score

for term i in document j is then defined to be TFij × IDFi. The terms with the

highest TF.IDF score are often the terms that best characterize the topic of the

document.

example 1.3 Suppose our repository consists of 220 = 1,048,576 documents.

Suppose word w appears in 210 = 1024 of these documents. Then IDFw =

log2(2
20/210) = log 2(210) = 10. Consider a document j in which w appears 20

times, and that is the maximum number of times in which any word appears

(perhaps after eliminating stop words). Then TFwj = 1, and the TF.IDF score

for w in document j is 10.

Suppose that in document k, word w appears once, while the maximum num-

ber of occurrences of any word in this document is 20. Then TFwk = 1/20, and

the TF.IDF score for w in document k is 1/2. �

1.3.2 Hash Functions

The reader has probably heard of hash tables, and perhaps used them in Java

classes or similar packages. The hash functions that make hash tables feasible

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-07723-2 - Mining of Massive Datasets: Second Edition
Jure Leskovec, Anand Rajaraman and Jeffrey David Ullman
Excerpt
More information

http://www.cambridge.org/9781107077232
http://www.cambridge.org
http://www.cambridge.org


1.3 Things Useful to Know 9

are also essential components in a number of data-mining algorithms, where the

hash table takes an unfamiliar form. We shall review the basics here.

First, a hash function h takes a hash-key value as an argument and produces

a bucket number as a result. The bucket number is an integer, normally in the

range 0 to B−1, where B is the number of buckets. Hash-keys can be of any type.

There is an intuitive property of hash functions that they “randomize” hash-keys.

To be precise, if hash-keys are drawn randomly from a reasonable population of

possible hash-keys, then h will send approximately equal numbers of hash-keys

to each of the B buckets. It would be impossible to do so if, for example, the

population of possible hash-keys were smaller than B. Such a population would

not be “reasonable.” However, there can be more subtle reasons why a hash

function fails to achieve an approximately uniform distribution into buckets.

example 1.4 Suppose hash-keys are positive integers. A common and simple

hash function is to pick h(x) = x mod B, that is, the remainder when x is

divided by B. That choice works fine if our population of hash-keys is all positive

integers. 1/Bth of the integers will be assigned to each of the buckets. However,

suppose our population is the even integers, and B = 10. Then only buckets

0, 2, 4, 6, and 8 can be the value of h(x), and the hash function is distinctly

nonrandom in its behavior. On the other hand, if we picked B = 11, then we

would find that 1/11th of the even integers get sent to each of the 11 buckets,

so the hash function would work very well. �

The generalization of Example 1.4 is that when hash-keys are integers, chosing

B so it has any common factor with all (or even most of) the possible hash-keys

will result in nonrandom distribution into buckets. Thus, it is normally preferred

that we choose B to be a prime. That choice reduces the chance of nonrandom

behavior, although we still have to consider the possibility that all hash-keys

have B as a factor. Of course there are many other types of hash functions not

based on modular arithmetic. We shall not try to summarize the options here,

but some sources of information will be mentioned in the bibliographic notes.

What if hash-keys are not integers? In a sense, all data types have values that

are composed of bits, and sequences of bits can always be interpreted as integers.

However, there are some simple rules that enable us to convert common types

to integers. For example, if hash-keys are strings, convert each character to its

ASCII or Unicode equivalent, which can be interpreted as a small integer. Sum

the integers before dividing by B. As long as B is smaller than the typical sum of

character codes for the population of strings, the distribution into buckets will be

relatively uniform. If B is larger, then we can partition the characters of a string

into groups of several characters each. Treat the concatenation of the codes for

the characters of a group as a single integer. Sum the integers associated with all

the groups of a string, and divide by B as before. For instance, if B is around a

billion, or 230, then grouping characters four at a time will give us 32-bit integers.

The sum of several of these will distribute fairly evenly into a billion buckets.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-07723-2 - Mining of Massive Datasets: Second Edition
Jure Leskovec, Anand Rajaraman and Jeffrey David Ullman
Excerpt
More information

http://www.cambridge.org/9781107077232
http://www.cambridge.org
http://www.cambridge.org


10 Data Mining

For more complex data types, we can extend the idea used for converting

strings to integers, recursively.

• For a type that is a record, each of whose components has its own type,

recursively convert the value of each component to an integer, using the

algorithm appropriate for the type of that component. Sum the integers for

the components, and convert the integer sum to buckets by dividing by B.

• For a type that is an array, set, or bag of elements of some one type, convert

the values of the elements’ type to integers, sum the integers, and divide by

B.

1.3.3 Indexes

An index is a data structure that makes it efficient to retrieve objects given the

value of one or more elements of those objects. The most common situation is

one where the objects are records, and the index is on one of the fields of that

record. Given a value v for that field, the index lets us retrieve all the records with

value v in that field. For example, we could have a file of (name, address, phone)

triples, and an index on the phone field. Given a phone number, the index allows

us to find quickly the record or records with that phone number.

There are many ways to implement indexes, and we shall not attempt to survey

the matter here. The bibliographic notes give suggestions for further reading.

However, a hash table is one simple way to build an index. The field or fields on

which the index is based form the hash-key for a hash function. Records have the

hash function applied to value of the hash-key, and the record itself is placed in

the bucket whose number is determined by the hash function. The bucket could

be a list of records in main-memory, or a disk block, for example.

Then, given a hash-key value, we can hash it, find the bucket, and need to

search only that bucket to find the records with that value for the hash-key. If

we choose the number of buckets B to be comparable to the number of records

in the file, then there will be relatively few records in any bucket, and the search

of a bucket takes little time.

example 1.5 Figure 1.2 suggests what a main-memory index of records with

name, address, and phone fields might look like. Here, the index is on the phone

field, and buckets are linked lists. We show the phone 800-555-1212 hashed to

bucket number 17. There is an array of bucket headers, whose ith element is the

head of a linked list for the bucket numbered i. We show expanded one of the

elements of the linked list. It contains a record with name, address, and phone

fields. This record is in fact one with the phone number 800-555-1212. Other

records in that bucket may or may not have this phone number. We only know

that whatever phone number they have is a phone that hashes to 17. �

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-07723-2 - Mining of Massive Datasets: Second Edition
Jure Leskovec, Anand Rajaraman and Jeffrey David Ullman
Excerpt
More information

http://www.cambridge.org/9781107077232
http://www.cambridge.org
http://www.cambridge.org

	http://www: 
	cambridge: 
	org: 


	9781107077232: 


