Contents

Acknowledgements					
Glo	ssary	,		xiii	
1	Inti	1			
	1.1	OEM	Model and Manufacturing Strategy	2	
	1.2	Anal	4		
	1.3	Orga	nization of this Volume	5	
2	Au	tomati	on and Robotics in Building Component		
	Ma	nufact	uring	7	
	2.1	Brick	work- and Ceramics-Based Components	8	
		2.1.1	History and Techniques of Brick and Ceramic Parts		
			Production	8	
		2.1.2	Keys and Figures	9	
		2.1.3	Classification of Ceramic Construction Elements and		
			Brickwork Products	9	
		2.1.4	Manufacturing Methods	10	
		2.1.5	Possibilities for Industrial Customization	12	
		2.1.6	End-Effectors and Automated Processes	12	
		2.1.7	Factory Layouts	20	
		2.1.8	Emerging Techniques in the Field	22	
		2.1.9	End-of-Life Strategies	24	
	2.2	Conc	rete-Based Components	25	
		2.2.1	History and Techniques of Concrete Prefabrication	26	
		2.2.2	Keys and Figures	27	
		2.2.3	Classification of Precast Concrete Products	28	
		2.2.4	Manufacturing Methods for Precast Concrete	30	
		2.2.5	Possibilities for Industrial Customization	32	
		2.2.6	Equipment and End-Effectors for Automated		
			Production	33	

Cambridge University Press 978-1-107-07639-6 - Robotic Industrialization: Automation and Robotic Technologies for Customized Component, Module, and Building Prefabrication Thomas Bock and Thomas Linner Table of Contents More information

vi	Contents	
	2.2.7 Factory Production Layouts	36
	2.2.8 Emerging Techniques in the Field	36
	2.2.9 End-of-Life Strategies	43
2.3	Wood-Based Components	43
	2.3.1 History and Techniques of Wood/Timber Construction	
	and Prefabrication	43
	2.3.2 Keys and Figures	44
	2.3.3 Classification of Products	44
	2.3.4 Manufacturing Methods	46
	2.3.5 Possibilities for industrial Customization	47
	2.3.0 End-Effectors and Automated Processes	49 52
	2.3.7 Factory Froduction Layouts	32
	Prefabrication	52
	2 3 9 End-of-Life Strategies	52 54
2.4	Steel-Based Components	54
	2.4.1 History and Techniques of Steel Production	54
	2.4.2 Kevs and Figures	55
	2.4.3 Classification of Products	55
	2.4.4 Manufacturing Methods: Steel Elements	57
	2.4.5 Possibilities for Industrial Customization	60
	2.4.6 End-Effectors and Automated Processes	61
	2.4.7 Factory Production Layouts	62
	2.4.8 Emerging Techniques in the Field	63
	2.4.9 End-of-Life Strategies	63
3 Bu	ilding Module Manufacturing	. 66
4 Co	mparison of Large-Scale Building Manufacturing in	
Dif	ferent Countries	72
4.1	Germany	73
	4.1.1 Wood-Based Housing Prefabrication in Germany	73
	4.1.2 Steel-Based Building Prefabrication in Germany	76
4.2	United Kingdom	82
	4.2.1 History	82
	4.2.2 General Overview	83
	4.2.3 Companies	84
	4.2.4 Manufacturing Methods	87
1.2	4.2.5 Conclusion	87
4.3	Spain	88
	4.3.1 History	88 00
	4.3.2 General Overview	00 88
	4.3.4 Manufacturing Methods	00 88
	435 Conclusion	89
44	China	89
	4.4.1 History	89
	J	

Cambridge University Press
978-1-107-07639-6 - Robotic Industrialization: Automation and Robotic Technologies for Customized Component,
Module, and Building Prefabrication
Thomas Bock and Thomas Linner
Table of Contents
More information

Contents

		112	Conoral Overview	80
		4.4.2	Companies	09 80
		4.4.5	Manufacturing Method	09
		445	Conclusion	91 02
		т.т.Ј	conclusion	
5	Lar	ge-Sca	ale Building System Manufacturing in Japan	93
	5.1	Back	ground, Development, and Strategy of the Industry	94
		5.1.1	Overview Companies (Turnover, Output, Employees,	
			Prices, Factories)	94
		5.1.2	Japan's Prefabrication Industry Today and Tomorrow	96
		5.1.3	Karakuri Technology Diffusion in Japan	98
		5.1.4	Influences of Local and Cultural Specifics and Disasters	99
		5.1.5	Roots in Chemicals, Electronics, and the Automotive	101
		F 1 (101
		5.1.0	Drivers for Prefabrication in Japan	103
		5.1.7	Salisui Hoim's M1	104
		5.1.0	From Japan's Traditional Organizational Culture	107
		5.1.9	towards TPS and Toyota Home	100
		511() Automated and Robotized Production as Sales	107
		5.1.10	Argument	110
		5.1.11	Sekisui Heim – ERP Systems for the Control of	110
			Increasing Complexity	111
		5.1.12	2 Timeline of Evolution of Prefabrication in Japan	112
	5.2	Robo	t-Oriented Design and Management Strategies Used in	
		the Ja	apanese Prefabrication Industry	116
		5.2.1	The Idea of Robot-Oriented Design and Management	116
		5.2.2	Complementarity as a Key Element in the Success of	
			Automated Prefabrication in Japan	116
		5.2.3	Robotic Logistics-Oriented Design	117
		5.2.4	Robotic Assembly–Oriented Design	118
		5.2.5	Degree of Structuring/Automation of Off-Site and	
			On-Site Environments	119
		5.2.6	OEM-like Integration Structure	121
		5.2.7	Modular Coordination	121
		5.2.8	Control of Variation by Platform- and Same-Parts	101
		520	Strategies	121
		5.2.9	Linking of Customer and Manufacturing System	122
		3.2.10	Pusiness Strategy	125
		5 2 11	Busiliess Strategy	123
	52	J.2.11 The M	Manufacturing Process	120
	5.5	531	Product Variety and Types of Prefabrication	120
		532	Production Process Explained by Sekisui's and Toyota's	12)
		0.0.2	Unit Method	129
		5.3.3	Factory Layouts and Process Design Strategies	135

vii

Cambridge University Press 978-1-107-07639-6 - Robotic Industrialization: Automation and Robotic Technologies for Customized Component, Module, and Building Prefabrication Thomas Bock and Thomas Linner Table of Contents <u>More information</u>

viii Contents 5.4 Analysis of Selected Companies and Their Manufacturing 148 **Systems** 5.4.1 Sekisui House (Fully Panelized Steel Kit) 149 5.4.2 Daiwa House (Steel Frame Combined with Panels) 159 5.4.3 Pana Home (Steel Panels Combined with Steel Components) 162 5.4.4 Sanyo Homes Corporation (Steel Frame Combined with Panels) 166 5.4.5 Asahi Kasei - Hebel House Homes (Steel Frame Combined with Aerated Concrete Panels) 168 5.4.6 Misawa Homes Sub- and Mini-Assembly Units (Wood Panels) 171 5.4.7 Mitsui Home (Wood Panels) 174 5.4.8 Tama Home (Wooden Frame Combined with Panels) 176 5.4.9 Muji House (Wooden Frame Combined with Panels) 181 5.4.10 Sekisui Heim (Steel Units) 185 5.4.11 Toyota Home (Steel Units) 198 5.4.12 Misawa Homes Hybrid (Steel Units) 201 5.4.13 Sekisui Heim Two-U Home (Wood Units) 206 5.5 Evolving Tendencies in the Evolution of the Japanese Prefabrication Industry 207 5.5.1 Advanced Product Service Systems 208 5.5.2 Prefabrication Industry as Part of a Large-Scale Disaster Management Strategy 211 5.5.3 Extending the Value Chain through the Development of Prefabricated, Sustainable High-Tech Settlements 216 5.5.4 Reverse Innovation: Mass-Customized Housing Production as a Prototype for Future Manufacturing Systems 222 References 225

Index

233