Contents

Acknowledgements.. page ix

Glossary.. xiii

1 **Advanced Construction and Building Technology** ... 1

1.1 Robot Technology Becomes Ubiquitous .. 2

1.2 The Origins of Automated Construction and Its Disruptive Nature 5

1.3 The Mission and Structure of the Series .. 9

1.3.1 Volume 1: Robot-Oriented Design – Design and Management Tools for the Deployment of Automation and Robotics in Construction ... 11

1.3.2 Volume 2: Robotic Industrialization – Automation and Robotic Technologies for Customized Component, Module, and Building Prefabrication 12

1.3.3 Volume 3: Construction Robots – Elementary Technologies and Single-Task-Construction Robots ... 13

1.3.4 Volume 4: Site Automation – Automated/Robotic On-site Factories 14

1.3.5 Volume 5: Ambient Robotics – Automation and Robotic Technologies for Maintenance, Assistance, and Service ... 15

2 **The Structure of this Volume** ... 18

3 **The Role of Complementarity of Products, Organization, Information, and Machine Technology** .. 21

3.1 Current State of Product Structures in Construction ... 24

3.2 Current State of Organization and Management in Construction 24

3.3 Informational Aspects in Construction .. 29

3.4 State-of-the-Art Machine Technology in Construction .. 33

3.4.1 The Roots of Component Manipulation in the Middle Ages 37

3.4.2 *Bauschiffe* (from 1910 onwards) .. 39
3.5 Neufert–Bauschiff/Hausbaumaschine (1943) 41
3.5.1 Mechanized On-Site Construction in Russia (since the 1940s) 41
3.5.2 7-Degrees-of-Freedom Manipulator Kinematics for Construction Purposes: Location Orientation Manipulator (1969) 42
3.5.3 Fusion of Prefabrication and Lifting Technology: BMW Tower (1972) 43
3.5.4 Zuse’s Extendable/Retractable Helix Tower (1985–1995) 43
3.5.5 Focus on Machine Technology 44

4 Introduction of Relevant Terms, Concepts, and Technologies 49
4.1 Productivity, Efficiency, and Economic Performance 50
4.1.1 Means of Production 51
4.1.2 Productivity 52
4.1.3 Efficiency 55
4.1.4 Health and Safety 58
4.1.5 Quality and Construction Defect Rate 59
4.1.6 R&D Spending in Construction 60
4.1.7 Investment Strategy 61
4.1.8 Low Capital Intensity of the Construction Industry 61
4.1.9 Integration along the Value Chain 63
4.2 Multilevel Modularity (Products, Processes, Organization, and Machines) 66
4.2.1 Types of Modularity 69
4.2.2 Frame and Infill Strategies 69
4.2.3 Flexibility and Adaptability of Buildings: Role and Design of Interfaces and Connectors 73
4.2.4 Flexibility and Adaptability of Manufacturing Systems 77
4.3 Technology and Organization in Manufacturing 79
4.3.1 Representative Production Systems 80
4.3.2 Analysing Manufacturing Systems 84
4.3.3 Logistics, the OEM Model, and Supply Chain Design 84
4.3.4 Flexibility and Adaptability of Manufacturing Systems 91
4.3.5 Manufacturing and Sustainability 92
4.3.6 Future Concepts in Manufacturing 93
4.4 Automation and Robot Technology 96
4.4.1 Robot Kinematics 100
4.4.2 Actuators 102
4.4.3 Sensor and Process Measuring Technology 103
4.4.4 End-Effectors 103
4.4.5 Modularity in Robotics 107
4.4.6 Human–Robot Cooperative Manipulation 109
4.4.7 Towards Open Source in Robotics 120
4.4.8 New Manufacturing Concepts Based on Robotic Self-Organization 122
5 Complex Products in Other Industries and Relevance of Fixed-Site/On-Site Manufacturing Technology

- **5.1 Tunnelling by TBMs**
 - Product
 - Manufacturing Strategy
 - Manufacturing System
 - Robot-Oriented Design
- **5.2 Shipbuilding**
 - Product
 - Manufacturing Strategy
 - Manufacturing System
 - Robot-Oriented Design (ROD)
- **5.3 Aircraft Manufacturing**
 - Product
 - Manufacturing Strategy
 - Manufacturing Systems
 - ROD
- **5.4 Automotive Manufacturing**
- **5.5 Comparative Analysis**
- **5.6 Performance Multiplication by Mechanization, Automation, and Robot Technology**
- **5.7 Systematization of Final Assembly by a Combination of OEM and the Factory Approach**

6 Synchronization of Organization, Building Structure, and Manufacturing Technology by Robot-Oriented Design

- **6.1 From DfX to ROD**
 - Design for Production
 - Design for Function
 - Design for End-of-Life
 - Design for Business Model
- **6.2 Designing within Capabilities of the Manufacturing System**
 - ROD Related to Production Aspects
 - ROD Related to Functional Aspects
 - ROD Related to End-of-Life Aspects
 - ROD Related to Business Model Aspects
- **6.3 Dimensions of ROD**
 - Reduction ofKinematic/Mechatronic Complexity
 - Reduction ofSensor, Process Measuring, and Control Complexity
 - Reduction ofOrganizational Complexity
 - Reduction ofGripper-/End-Effector Complexity
 - Reduction ofInformation/Computational Complexity
 - Reduction ofComplexity Throughout the Life Cycle
 - Complexity Reduction Along the Value Chain by ROD
- **6.4 Application of ROD in Various Architectonic Scales**
Contents

6.5 Guidelines for Robotic Production and Assembly-Oriented Design in Construction

6.5.1 How Product Structure, Component Design, and Variation Influence the Manufacturing System 187
6.5.2 Identification and Coordination of Relations between Design and Manufacturing Methods 197
6.5.3 Geometric Coordination 200
6.5.4 Robotic Production–Oriented Design in Construction 201
6.5.5 Robotic Assembly–Oriented Design in Construction 204
6.5.6 Choosing, Designing and Redesigning of the Construction Robot System 225

7 Utilizing Innovation Science to Develop and Deploy Automated/Robotic Systems in Construction 231

7.1 Innovation Mechanisms in General 231
7.1.1 Typological Viewpoint 232
7.1.2 System Viewpoint 233
7.1.3 Process Viewpoint 234
7.1.4 Novelty Level Viewpoint 234

7.2 Innovation Mechanisms in Construction 235
7.2.1 Innovation by Production Technology 235
7.2.2 Innovation by Modularity 235
7.2.3 Innovation by Performance 236
7.2.4 Innovation by Technology Transfer 236
7.2.5 Innovation by Transformation 237
7.2.6 Innovation by Overlay 238
7.2.7 Innovation by Customer 238

7.3 Realizing Innovation in Construction by 7-Dimensional View 239
7.4 Examples for Application of the Proposed Methodology 241
7.5 Reverse Innovation – Using the Construction Industry as an Incubator for Future Manufacturing Systems 241
7.5.1 Current Strategy of Automation and Robot Technology Providers 244
7.5.2 The Idea of Reverse Innovation 245
7.5.3 Advanced Approaches to Be Re-transferred from Automated Off-/On-Site Construction 246

7.6 Concept of Life-Cycle Integrated Manufacturing Technology 253

8 Competitive Advantage by Co-adapted Expansion of Products and Manufacturing Systems 256

References 261
Index 275