Index

AAMS. See alignment and accuracy measurement system
ABCS. See automated building construction system
ACBT. See advanced construction and building technology
actuators, 102–103
advanced construction and building technology (ACBT), 9–11, 49–50
for architecture, 10–11
R&D for, 9
advanced modular micro-production system (AMMS), 94
agility, of a company, 78
agricultural sector. See computer-aided farming
AGV. See automated guided vehicle
aircraft manufacturing, 139–143
d总 assembly strategies in, 152–153
Ford production process for, 189
robot technology in, 150
ROD for, 143, 189–190
strategies and systems in, 140–143
airplanes, as products, 139–140
alignment and accuracy measurement system (AAMS), xiii
allocation efficiency, 56
AMMS. See advanced modular micro-production system
AMURAD. See automatic up-rising construction by advanced technique
Andon production system, 83
android/humanoid robot technology, 118–119
architectonic scales, in ROD, 184–185
Architects Data, 41
assembly, xiii
adaptive, 205
in aircraft manufacturing, 152–153
automatic, 204
of building structures, 209–216
components, 221
factory approach to, 152–155
flexible, 204
joining mechanisms, 216–220
manual, 204
OEM approach to, 152–155
reverse innovation and, 249
in ROD, 204–225
semi-automatic, 204
in shipbuilding, 129, 152–153
sub-operations for, 205
systemization of, 152–155
for TBMs, 152–153
in tunneling industry, 152–153
in various construction industries, 146
assembly system logistics, 84
automated building construction system (ABCS), 171
automated construction. See also robot technology
application and development of, 2
applications for, 99–100
assistance and, 15–17
building maintenance and, 15–17
conventional construction and, 6
disruptive nature of, 5–9
end-effectors in, 108
growth phase of, 6, 8–9
innovation phase of, 6, 7–8
maturity of, 6, 8–9
maturity phase of, 6
origins of, 5–9
PMIE in, 150–151
service and, 15–17
themetic fields for, 5
automated guided vehicle (AGV), xiii
automated/robotic on-site factories, xiii
capital intensity for, 62–63
comparative analysis of, by industry, 144
definition for construction and deconstruction, 14–15
CS in, xiv
development history for, 7–8
economic performance of, 51
efficiency of, 51
MHSPY and, xviii–xix
automated/robotic on-site factories (cont.)
multilevel modularity in, 68
productivity of, 51
reverse innovation in, 249
RTMMS in, xxi–xxii
SF in, xiv

automatic up-rising construction by advanced technique (AMURAD), 236–237

automation technology, 49, 96–124. See also automated construction; robot technology actuators in, 102–103
construction applications for, 99–100
development of, 96–100
end-effectors in, xvi, 103–104
fixtures in, 105
inbuilt dexterity levels in, 106–107, 108
jigs in, 105
Karakuri Ningyo technology, 98
multi-move settings in, 105
parallel processes in, 104–105
PME by, 147–151
reverse innovation and, 244–245, 249–250
scales in, 105–106
sensor systems in, 103
serial processes in, 104–105
system complexity in, 120
tele-construction in, 110–116
tele-control in, 110–116
tele-existence in, 110–116
in tunneling, 149–150
work task complexity in, 120

automotive industry
capital intensity in, 61–62
manufacturing in, 143–144
product structure advances in, 257–258
robot technology in, 150
ROD in, 187–188

batch size, xiii
Bauordnunglehre (Neufert), vi, 41
Bauschiff (ship frame construction), 39–40
BCM. See building component manufacturing
Benz, Karl, 38
BIM. See building information modeling
BMBF. See Bundesministerium für Bildung und Forschung
Buckminster, Richard, 238
building component manufacturing (BCM), xiii, 7, 12–13
building industries. See aircraft manufacturing; automotive industry; construction; shipbuilding
building information modeling (BIM), 32
building integrated manufacturing technology, xiii
Bundesministerium für Bildung und Forschung (BMBF), xiii

CAF. See computer-aided farming
CAFM. See computer-aided management
capital intensity, xiv. See also workplace costs for automated/robotic on-site factories, 62–63
in automotive industry, 61–62
low in construction industry, 61–63
capital productivity, 53
CAQM. See computer-aided quality management
chain-like organizations, xiv
changeover ability, 78
CIM. See computer integrated manufacturing
climbing system (CS), xiv, xvi
closed loop manufacturing, 251–253
closed loop resource circulation, xiv
Closed Sky Factory (CSF), xiv
CNC. See computer numerical control
components, xiv
assembly-oriented, 221
carriers, xiv, 87
connector systems for, xv
control mode adaptation in, 226
disassembly requirements in, 224–225
end-effectors and, 226–227
handling requirements, 221
industrialized components of, 12–13
kinematic structure for, 226
maintenance requirements in, 224
manipulation of, in machine technology, 37–38
manufacture of, 13
modular systems, 25–26
redesign of, 222
robot modularity and, 226
in ROD, 179–185, 184, 192
computer integrated manufacturing (CIM), xv
CAD/CAM and, xiv, 31
in construction, 29, 32–33
integration of macrosystems, 32
purpose of, 30
computer numerical control (CNC), 29
computer-aided design/computer-aided manufacturing (CAD/CAM), 30, 31
CIM and, xiv, 31
construction with, 29
crputer-aided engineering (CAE), 29
crputer-aided farming (CAF), 149
crputer-aided management (CAFM), 32
crputer-aided quality management (CAQM), xiv
connector systems, xv, 73–74, 77
crostruction, xv. See also automated construction;
defects, in construction; machine technology;
reverse innovation
adaptability of, 73–77
assembly in, by specific industry, 146
automated/robotic on-site factory for, 14–15
with Bauschiff, 39–40
BIM for, 32
with CAD, 29
CIM in, 29, 32–33

© in this web service Cambridge University Press
www.cambridge.org
comparative analysis to other industries, 144–146
conventional, 6, 68
defect costs in, 28
defect rates in, 59–60
digital sites, 28
DOF for, 42
of Elbphilharmonie complex, 65
F&e strategies in, 69–70
flexibility of, 73–77
health and safety factors for, 58–59
industry productivity, declines in, 1, 7
informational aspects of, 29–33
innovation science for, 235–239
integration along value chain in, 63–66
investment strategies for, 61
job site installation in, 27
labor-based nature of, 28
lean, 28
low capital intensity in, 61–63
management in, 24–28
of modular structures, 24
on-site processes, 34, 35, 41–42
organization in, 24–28
PME in, 150–151
product structures in, 24
R&D spending, 1–2, 60–61
robot technology for, 150–151
ROD for, 24, 185–197, 201–204, 225–230
with SCARA, 24
7-dimensional view in, 239–241
Sommerfeld’s influence on, 40
technology and machines in, 22
of Willy Brandt Airport, 64–65
construction automation, 130, 186, 244
construction robotics, i, 98
conventional construction, 6, 68
CS. See climbing system
CSF. See Closed Sky Factory
cycle time; xv
Da Vinci, Leonardo, 38
data acquisition technology, 28
defects, in construction, 28, 59–60
degree of freedom (DOF), xv
kinematic base body and, xvii–xviii
in kinematic body positioning and orientation, xx
manipulator kinematics for construction, 42
in robot kinematics, 101–102
rotation of kinematic structures and, xxii
DEKRA. See Deutscher Kraftfahrzeug-Überwachungs-Verien
Dematic, 123–124
design for business model (DIBM), 160–161
design for end-of-life (DIeL), 159–160
design for function (DF), 158–159
design for manufacturing (DIM), 157–158
design for production (DIP), 157–158
design for X (DIX) strategies, xv
ROD and, xv, 156, 157, 161–163
in TPS, 83
Deutscher Kraftfahrzeug-Überwachungs-Verien (DEKRA), xv
DIBM. See design for business model
DIeL. See design for end-of-life
DF. See design for function
DIM. See design for manufacturing
DIP. See design for production
DIX strategies. See design for X strategies
digital construction sites, 28
distributed building production, 96
DOF. See degree of freedom
downstream processes, xxiv
Dymaxion Car, 238
economic efficiency, 51, 52–56
economic performance, 49
analysis of, 50–51, 52
of automated/robotic on-site factories, 51
economic productivity, 53
efficiency, xv, 49
allocation, 56
analysis of, 50–51, 55–58
of automated/robotic on-site factories, 51
economic, 56
resource, 56–57
technical, 56
Elbphilharmonie complex, construction of, 65
effector
in aircraft manufacturing, 143
in automated construction sites, 108
in automation technology, xvi, 103–104
complexity of, 172–174
component design and, 226–227
coupling strategies for, 104
modularity and, 109
in prefabrication, 107
in robot technology, xvi, 103–104, 108
in ROD, 172–174
TCP in, 103–104
types of, 105–106
Engleberger, Joe, 2–3
tenterprise resource planning (ERP), 130
reverse innovation and, 248–249
ERP. See enterprise resource planning
evolutionary changeability, 78
fab labs, 95–96
factories. See also automated/robotic on-site factories; ghost factories; ground factory; Sky Factory
floating, 95
n-X floors in, xix
roof structure, xvi
systemization of final assembly in, 152–155
24/7-mode in, xxiv
“zero-waste”, xxiv, 251–253
factory external logistics (FEL), xvi, 85
factory internal logistics (FIL), xvi, 85–91
indoor, 85
outdoor, 85
types of, 85, 86
FEC. See floor erection cycle
FEL. See factory external logistics
F&I. See frame and infill
FIL. See factory internal logistics
final integrator, xvi
fixed-site manufacturing, xvi
fixtures, in automation and robot technology, 105
flexibility. See also modular flexibility
inbuilt, 78
of manufacturing systems, 77–79, 91
modular, 78
of production systems, 78
of workers, in production systems, 82–83
floating factories, 95
floor erection cycle (FEC), xvi
flow line organization, xvi
flow of material, xvi
Ford, Henry, 24, 150
aircraft manufacturing under, 189
production system under, TPS compared to, 81
shipbuilding under, 188
frame and infill (F&I) strategies, xvi–xvii, 146
allocation depth of, 73
in construction industry, 69–70
interfaces and, 75–77
MC and, xviii
full-body robot exoskeletons, 117–118
Gates, Bill, 2
GF. See ground factory
ghost factories, 31, 46, 148–149, 151
Gropius, Walter, 39–40, 41, 237
ground factory (GF), xvii, xviii–xix
group-like organization, xvii
Habraken, N. J., 70–71
Haller, Fritz, 70
HDS. See horizontal delivery system
health and safety issues, for construction, 58–59
Helix tower prototypes, 43–44
HER group. See human environment robot group
horizontal delivery system (HDS), xvi
factory roof structure and, xvi
OMs and, xx
RTMMS and, xxi–xxii
horizontally moving TBMs, 125
human environment robot (HER) group, 119
human power amplification, 116–117
human resources, production and, 51
humanoid robot technology. See
android/humanoid robot technology
human-robot cooperative manipulation, 109–110
IbC. See innovation by customer
IbM. See innovation by modularity
IbO. See innovation by overlay
IbP. See innovation by performance
IbPT. See innovation by production technology
IbT. See innovation by transformation
IbTT. See innovation by technology transfer
idle time, xvii
inbuilt flexibility, xvii, 78
innovation by customer (IbC), 238–239
innovation by modularity (IbM), 235–236, 242–243
innovation by overlay (IbO), 238
innovation by performance (IbP), 236
innovation by production technology (IbPT), 235
innovation by technology transfer (IbTT), 235–236
innovation by transformation (IbT), 237–238
innovation science. See also reverse innovation
application of methodologies, 241
change management in, 232
for construction, 235–239
development of mechanisms, 231–232
individual deployment of, 232
novelty level viewpoint of, 234–235
process viewpoint of, 234
7-dimensional view in, 239–241
shimbashira approach in, 237–238
system viewpoint of, 233
typologies, 232–233
integrated STCR systems, 14
interfaces, 73–77
categories of, 74, 77
F&I strategies and, 75–77
motorized units and, 74
International Association for Automation and Robotics in Construction, 32
investment strategies, for construction industry, 61
iPhone, 161
jigs, in automation and robot technology, 105
JIS. See just in sequence
JIT. See just in time systems
job site installation, 27
joint of manipulator, xvii
Junkers, Hugo, 38
just in sequence (JIS), xvii
just in time (JIT) systems, xvii, xxii
Kaizen production system, 83–84
Kanban production system, 82
Karakuri Ningyo technology, 98
kinematic base body, xvii–xviii
kinematic body positioning and orientation, xvii–xviii
kinematic synthesis, 37–38
kinematics, xvii
base bodies, 102
components and, 226
DOFs in, 101–102
location orientation manipulators, 42
manipulators and, xviii
modularity in, 109
in robot technology, 100–102
ROD and, 168–169
rotation in, xxii
translation of, xxiv
Kiva Systems, 123

labor productivity, 53–55
large scale prefabrication (LSP), xviii, 7, 12–13
lead time, in manufacturing, xviii
lean construction, 28
life-cycle integrated manufacturing technology, 253–255
lifting technology, 43
link of manipulators, xviii
location orientation manipulators (LOMs), 42
logistics systems, xviii
assembly system, 84
embedding, 221
FEL, xvi, 85
FIL, xvi, 84, 85–86, 91
in manufacturing, 84–91
LOMs. See location orientation manipulators
low capital intensity, 61–63
LSP. See large scale prefabrication
machine productivity, 53
machine technology, 21, 33–48. See also automated construction; robot technology
Bauschiff and, 39–40
component manipulation in, 37–38
conventional building machines, 34–35
development roots of, 36–38
evolution of, 39
focus of, vi, 44–48
helix tower prototypes, 43–44
industrialization of, 39–40
kinematic synthesis and, 37–38
lifting technology, 43
LOMs, 42
Neuert’s influence on, vi, 41
for ONM, 41–42
for on-site construction, 41–42
prefabrication technology, 43
Sommerfeld’s influence on, 40
Taylorism and, 39–40
manipulators, xviii
manufacturing systems, xviii. See also off-site manufacturing; on-site manufacturing
adaptability of, 77–79, 91
aircraft, 140–143
AMMS, 94
analysis of, 84
assembly in, xiii
BCM, xiii
closed loop, 251–253
comparison of, 145
downstream processes in, xxiv
fab labs and, 95–96
flexibility of, 77–79, 91
in floating factories, 95
future concepts in, 93–94
Kaizen system, 83–84
lead time, xviii
logistics in, 84–91
OEM and, 84–85
organization in, 49, 79–96
pallets and, 87
parameters for, 79
personal fabricators and, 95–96
production in, xxi
robot technology and, 122–124
for ROD, 161–167, 198–200
RTE in, 93–94
for shipbuilding, 129–130
subsystems within, 146
supply chain design and, 84–85
sustainability in, xxii, 92–93
for TBMs, 126–127
technology in, 49, 79–96
transition from craft-based systems, 154
upstream processes in, xxiv
mass customization (MC), xviii, 31
material handling, sorting and processing yard (MHSPY), xviii–xxix
material productivity, 53
May, Ernst, 40
MC. See mass customization
means of production, xix
MFF. See mobile field factory
MHSPY. See material handling, sorting and processing yard
Micro Compact Car GmbH, 91–92
microsystem technology. See building integrated manufacturing technology
mining. See urban mining
mobile field factory (MFF), 95
modular flexibility, xix, 78
modularity, xix. See also multilevel modularity
end-effectors and, 109
end-effectors and, 109
in kinematic structures, 109
in robot technology, 107–109
system integration and, 109
types of, 69
modules, xix, 66
in building component systems, 25–26
composition of, 66–67
construction of, 24
industrialized customization of, 12–13
in ROD, 179, 181–183
Moravec, H., 120
motorized units, interfaces and, 74
multilevel modularity, 49, 66–79
applications of, 67–68
in automated/robotic on-site factories, 68
Habraken as influence on, 70–71
in ONM, 68
Open Building Approach in, 70–72
multi-move settings, in automation and robot technology, 105
Neufert, Ernst, vi, 40, 41
no-failure design, 158
n-X floors, in factories, xix

OEM. See original equipment manufacturer
OEM-like integration structure, xix, 146
off-site manufacturing (OFM), xix
 LSP and, xviii
 reverse innovation and, 246–247
 in Russia, 41–42
OMs. See overhead manipulators
one-piece flow (OPF), xx
 reverse innovation and, 248–249
in TPS, xiii, 82
ONM. See on-site manufacturing
on-site automation, 177–179
on-site construction processes, 34, 35, 41–42
on-site manufacturing (ONM), xx
 mechanized, 41–42
MFF for, 95
multilevel modularity in, 68
reverse innovation and, 246–247
Open Building Approach, 70–72
Open Sky Factory (OSF), xiv
open source, in robot technology, 120–122
OPF. See one-piece flow
order fulfillment systems, 123
organization
 chain-like, xiv
 in construction, 24–28
 flow line, xvi
 group-like, xvii
 in manufacturing, 49, 79–96
 workbench-like, xxiv
 workshop-like, xxiv
original equipment manufacturer (OEM), xx
 depth of added value and, xv
 final integrator in, xvi
JIS and, xvii
JIT and, xvii
manufacturing systems and, 84–85
model, xix
 systemization of final assembly for, 152–155
Osanbashi Pier, 238
OSF. See Open Sky Factory
outfitting, in shipbuilding, 129
overhead manipulators (OMs), xx
 factory roof structure and, xvi
 FES and, xviii–xix
HDS and, xx
JIS for, xvii–xix
JIT for, xviii–xix
MHSYP and, xviii–xix
ROD and, xx
pallets. See also components
 in manufacturing systems, 87
 palletizing and de-palletizing sequencing, 87
 pantograph technology, 147–148
 parallel processes, 104–105
 Partial robot exoskeletons, 117
 parts, xx
 performance multiplication effect (PME), xx, 27
 in automated tunneling, 149–150
 by automation, 147–151
 in CAF, 149
 in construction industry, 150–151
 in ghost factories, 148–149, 151
 by mechanization, 147–151
 with pantograph technology, 147–148
 by robot technology, 147–151
 in self-acting machine systems, 147
 personal fabricators, 95–96
 platform strategy, xx
 plug-and-play connectors, 74
PME. See performance multiplication effect
prefabrication technology, 43
end-effectors in, 107
principle of continuous flow of materials, 81
principle of intelligent and adaptive automation, 81–82
production, xxi. See also machine technology;
 Toyota Production System
Andon system, 83
distributed building, 96
domestic investment ratio for, by nation, 62
flexibility of, 78
Kaizen system, 83–84
principle of continuous flow of materials, 81
principle of intelligent and adaptive automation, 81–82
pulling system, xxi, xiii, 82
pushing system, xxi, 82
representative systems, 90–94
ROD and, 163–164, 177
worker flexibility, 82–83
production line organization, xx
productivity, xxi, 49
analysis of, 50–51
of automated/robotic on-site factories, 51
 capital, 53
 in construction industry, declines in, 1, 7
 economic, 53
 expressions of, 51, 52–55
 human resources for, 51
 labor, 53–55
 machine, 53
 material, 53
 means of, 51
 resource, 53
 technical, 53
 transformational process for, 51
work, 53
Project Better Place, 167
pulling production, xxi
 TPS and, xiii, 82
 pushing production, xxi, 82
radio frequency identification (RFID) tags, xxi
R&D. See research and development
real-time economy (RTE), xxii, 93–94
real-time monitoring & management system (RTMMS), xxi–xxii
re-configurability, 78
re-customization, xxii
research and development (R&D) for ACBT, 9
for construction, 1–2, 60–61
information in, 29
for STCR systems, 7
resource efficiency, 56–57
resource productivity, 53
reverse innovation, 241–253
advance customer integration and, 247
assembly and, 249
in automated/robotic on-site factories, 249
automation technology and, 244–245, 249–250
closed loop manufacturing strategies for, 251–253
as concept, 245–246
ERP and, 248–249
OFM and, 246–247
ONM and, 246–247
production-line based OPF and, 244–245, 249–250
urban mining and, 251–252
in “zero-waste” factories, 251–253
RFID tags. See radio frequency identification tags
robot exoskeletons, 117–118
robot-oriented design (ROD), 11–12
ABCS and, 171
accuracy systems, 207–209
for aircraft manufacturing, 143, 189–190
in architectonic scales, 184–185
assembly-oriented design in, 204–225
for automotive manufacturing, 187–188
on building scale, 184–185
for building structures, 209–216
business model aspects of, 166–167
checklist for, 223
components in, 179–183, 184, 192
computational complexity in, 174–175
conception redesign, 229
for construction, 24, 185–197, 201–204, 225–230
control complexity in, reduction of, 169–170
control of variation in, 192, 205–207
design subsystems, 157–161
development of, xxii, 8, 12, 156
DBM, 160–161
DFEL, 159–160
DFP, 158–159
DOF, 157–158
DX strategies for, xv, 156, 157, 161–163
dimensions of, 167–183
disassembly requirements in, 224–225
elements of, 156
closed-loop complexity in, 172–174
closed-loop aspects of, 165–166
functional aspects of, 164–165
geometric coordination in, 200–201
gripper complexity in, 172–174
informational complexity in, 174–175
joining mechanisms in, 216–220
kinematic/mechatronic complexity of, reduction of, 168–169
life cycle of, reduction of complexity throughout, 175–176
maintenance requirements, 224
by manufacturing phase, 198–200
manufacturing system capabilities for, 161–167
on master plan scale, 185
module assembly, 179, 181–183
OMs and, xx
on-site automation and, 177–179
organizational complexity of, 170–171
prefabrication/preassembly and, 177
process chains in, 228–229
process measuring in, reduction of, 169–170
product structure and, 192
production aspects for, 163–164
in pure production, 177
robot technology and, 177–179
in robotics, 177–179
SCARA and, 163–164
sensor complexity and, reduction of, 169–170
for shipbuilding, 139, 188
SMAS and, 173–174
in SMEs, 167
for specific building materials, 199–200
for specific manufacturing strategies, 200
for TBM s, 127–128
tolerance systems, 207–209
in TPS, 83
units in, 181
urban mining in, xxiv, 166
value chain in, reduction of complexity along, 176–183
robot technology, 49, 96–124. See also building
integrated manufacturing technology; robot exoskeletons
actuators in, 102–103
in aircraft industry, 150
android/humanoid, 118–119
assistance and, 15–17
in automotive industry, 150
building maintenance, 15–17
construction applications for, 99–100
in construction industry, 150–151
development of, 96–100
end-effectors in, xvi, 103–104, 108
evolution of research on, 3
fixtures in, 105
for human power amplification, 116–117
human-robot cooperative manipulation, 109–110
inbuilt dexterity levels in, 106–107, 108
industrialized customization of, 12–13
jigs in, 105
Karakuri Ningyo technology, 98
robot technology (cont.)
kinematics in, 100–102
material handling in, 116–117
modularity in, 107–109
multi-move settings in, 105
new manufacturing concepts in, 122–124
open source in, 120–122
order fulfillment systems with, 123
parallel processes in, 104–105
PME by, 147–151
reverse innovation and, 244–245, 249–250
ROD and, 177–179
scales in, 105–106
SDKs for, 121–122
self-organization in, 122
sensor systems in, 103
serial processes in, 104–105
service and, 15–17
social robotics, 119, 120
swarm, 123
system complexity in, 120
tele-construction in, 110–116
tele-control in, 110–116
tele-existence in, 110–116
work task complexity in, 120
robotic on-site factory. See automated/robotic
on-site factories
Robotic Service Wall, 75
robotics. See robot technology
ROD. See robot-oriented design
rotation, of kinematic structures, xxii
DOF and, xxii
RTE. See real-time economy
RTMMS. See real-time monitoring &
management system
Sass, L., 96
scales, in automation and robot technology,
105–106
SCARA. See selective compliance articulated
robot
SDKs. See software development kits
SE. See structured environment
Sekisui Heim, 72–73, 181
selective compliance articulated robot (SCARA),
xxii, 24, 163–164
sensor systems technology. See also building
integrated manufacturing technology
in automation technology, 103
in robot technology, 103
in ROD, reduction of, 169–170
serial processes, 104–105
7-dimensional view, innovation in construction by,
239–241
SF. See Sky Factory
shimbashira approach, in innovation science,
237–238
ship frame construction. See Bauschiff
shipbuilding, 128–139
assembly strategies in, 129, 152–153
Bauschiff in, 39–40
ERP strategies in, 130
under Ford production process, 188
manufacturing strategy and systems for,
129–130
outfitting in, 129
ROD for, 139, 188
ships, as products, 128–129
single-task construction robot (STCR) systems,
xxii
development of, 13–14
first generations of, 14
flexibility of, 14
integrated, 14
R&D for, 7
Sky Factory (SF), xxii
climbing system and, xiv
CSF in, xiv
OSF, xx
stilts in, xxii
slip forming technology, xxii
small and medium sized enterprises (SMEs), 167
Smart Car. See Micro Compact Car GmbH
SMAS. See solid material assembly system
SMEs. See small and medium sized enterprises
Smithwick, D., 96
social robotics, 119, 120
socially situated robot learning (SSRL), 119
software development kits (SDKs), 121–122
solid material assembly system (SMAS), 173–174,
190–197
Sommerfeld, Adolf, 40, 41
Sony Walkman, 163, 164
SSRL. See socially situated robot learning
STCR systems. See single-task construction robot
systems
stilts, in SFs, xxii
storage facilities, 87–91
structured environment (SE), xiv
superstructure, xxii
supply chain, xxii
manufacturing and, 84–85
sustainability, in manufacturing, xxiii, 92–93
swarm robotics, 123
Tachi, Susumu, 110
taylorism, machine technology and, 39–40
TBM. See tunnel boring machine
TCP. See tool centre point
technical efficiency, 56
technical productivity, 53
Technische Universität München (TUM), 9–10,
258
technology. See specific technologies
technology diffusion, xxiii
tele-construction, 110–116
tele-control, 110–116

Cambridge University Press
Thomas Bock and Thomas Linner
Index
More information
Index

tele-existence, 110–116
textile industry, in England, 147
tier-n suppliers, xxiii
tool centre point (TCP), xxiii, 103–104
tool makers, in TPS, 83
Toyota, Sakichi, 81–82
Toyota Home, 72–73
Toyota Loom Works, 81
Toyota Production System (TPS), xxiii
design methodology for, 83
development of, 80–81
DfP in, 158
DfX-strategies in, 83
Ford production system compared to, 81
Kanban system in, 82
no-failure design in, 158
OPF and, xxiii, 82
principle of intelligent and adaptive automation in, 81–82
product fusion in, 83
pulling production in, xxiii, 82
pushing production in, xx, 82
ROD in, 83
tool makers in, 83
worker flexibility in, 82–83
TPS. See Toyota Production System
transformability, of a company, xxiii
transformational process, xxiii
translation, of kinematic structure, xxiv
TUM. See Technische Universität München
tunnel boring machines (TBMs), xxiv, 125–128
development of, 150
final assembly strategies for, 152–153
horizontally moving, 125
manufacturing strategies and systems, 126–127
ROD for, 127–128
tunneling industry
automation in, 149–150
development of, through mechanization, 149–150
final assembly strategies in, 152–153
tunnels, as products, 126
24/7-mode, xxiv
Ubiquitous Computing, 15–17
Uhl, Oto Kar, 70
unified robot description model (URDF), 122
unit method, xxiv
units, xxiv
in ROD, 181
upstream processes, xxiv
urban mining, xxiv, 166
reverse innovation and, 251–252
URDF. See unified robot description model
value chains, in construction industry, 63–66
vertical delivery system (VDS), xxi–xxii, xxiv
warehouse facilities, 87–91
wearable robot technology, 117–118
Wichita House, 238
Willy Brandt Airport, in Berlin, construction of, 64–65
woodcraft industry, 147–148
work productivity, 53
workbench-like organization, xxiv
workplace costs, 62
workshop-like organization, xxiv
“zero-waste” factories, xxiv, 251–253
Zuse, Konrad, 148–149