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Variational Bayesian Learning Theory

Variational Bayesian learning is one of the most popular methods in machine learning.

Designed for researchers and graduate students in machine learning, this book summa-

rizes recent developments in the nonasymptotic and asymptotic theory of variational

Bayesian learning and suggests how this theory can be applied in practice.

The authors begin by developing a basic framework with a focus on conjugacy, which

enables the reader to derive tractable algorithms. Next, it summarizes nonasymptotic

theory, which, although limited in application to bilinear models, precisely describes

the behavior of the variational Bayesian solution and reveals its sparsity-inducing

mechanism. Finally, the text summarizes asymptotic theory, which reveals phase

transition phenomena depending on the prior setting, thus providing suggestions on

how to set hyperparameters for particular purposes. Detailed derivations allow readers

to follow along without prior knowledge of the mathematical techniques specific to

Bayesian learning.
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Preface

Bayesian learning is a statistical inference method that provides estimators

and other quantities computed from the posterior distribution—the conditional

distribution of unknown variables given observed variables. Compared with

point estimation methods such as maximum likelihood (ML) estimation and

maximum a posteriori (MAP) learning, Bayesian learning has the following

advantages:

• Theoretically optimal.

The posterior distribution is what we can obtain best about the unknown

variables from observation. Therefore, Bayesian learning provides most

accurate predictions, provided that the assumed model is appropriate.

• Uncertainty information is available.

Sharpness of the posterior distribution indicates the reliability of

estimators. The credible interval, which can be computed from the posterior

distribution, provides probabilistic bounds of unknown variables.

• Model selection and hyperparameter estimation can be performed in a

single framework.

The marginal likelihood can be used as a criterion to evaluate how well a

statistical model (which is typically a combination of model and prior

distributions) fits the observed data, taking account of the flexibility of the

model as a penalty.

• Less prone to overfitting.

It was theoretically proven that Bayesian learning overfits the observation

noise less than MAP learning.

On the other hand, Bayesian learning has a critical drawback—computing

the posterior distribution is computationally hard in many practical models.

This is because Bayesian learning requires expectation operations or integral

computations, which cannot be analytically performed except for simple cases.

ix
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x Preface

Accordingly, various approximation methods, including deterministic and

sampling methods, have been proposed.

Variational Bayesian (VB) learning is one of the most popular deterministic

approximation methods to Bayesian learning. VB learning aims to find the

closest distribution to the Bayes posterior under some constraints, which are

designed so that the expectation operation is tractable. The simplest and most

popular approach is the mean field approximation where the approximate

posterior is sought in the space of decomposable distributions, i.e., groups

of unknown variables are forced to be independent of each other. In many

practical models, Bayesian learning is intractable jointly for all unknown

parameters, while it is tractable if the dependence between groups of parame-

ters is ignored. Such a case often happens because many practical models have

been constructed by combining simple models in which Bayesian learning is

analytically tractable. This property is called conditional conjugacy, and makes

VB learning computationally tractable.

Since its development, VB learning has shown good performance in many

applications. Its good aspects and downsides have been empirically observed

and qualitatively discussed. Some of those aspects seem inherited from full

Bayesian learning, while some others seem to be artifacts by forced indepen-

dence constraints. We have dedicated ourselves to theoretically clarifying the

behavior of VB learning quantitatively, which is the main topic of this book.

This book starts from the formulation of Bayesian learning methods. In

Part I, we introduce Bayesian learning and VB learning, emphasizing how

conjugacy and conditional conjugacy make the computation tractable. We also

briefly introduce other approximation methods and relate them to VB learning.

In Part II, we derive algorithms of VB learning for popular statistical models,

on which theoretical analysis will be conducted in the subsequent parts.

We categorize the theory of VB learning into two parts, and exhibit them

separately. Part III focuses on nonasymptotic theory, where we do not assume

the availability of a large number of samples. This analysis so far has been

applied only to a class of bilinear models, but we can make detailed discus-

sions including analytic forms of global solutions and theoretical performance

guarantees. On the other hand, Part IV focuses on asymptotic theory, where

the number of observed samples is assumed to be large. This approach has

been applied to a broad range of statistical models, and successfully elucidated

the phase transition phenomenon of VB learning. As a practical outcome,

this analysis provides a guideline on how to set hyperparameters for different

purposes.
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Preface xi

Recently, a lot of variations of VB learning have been proposed, e.g., more

accurate inference methods beyond the mean field approximation, stochastic

gradient optimization for big data analysis, and sampling based update rules for

automatic (black-box) inference to cope with general nonconjugate likelihoods

including deep neural networks. Although we briefly introduce some of those

recent works in Part I, they are not in the central scope of this book. We rather

focus on the simplest mean field approximation, of which the behavior has

been clarified quantitatively by theory.

This book was completed under the support by many people. Shinichi

Nakajima deeply thanks Professor Klaus-Robert Müller and the members in

Machine Learning Group in Technische Universität Berlin for their direct and

indirect support during the period of book writing. Special thanks go to Sergej

Dogadov, Hannah Marienwald, Ludwig Winkler, Dr. Nico Gönitz, and Dr. Pan

Kessel, who reviewed chapters of earlier versions, found errors and typos,

provided suggestions to improve the presentation, and kept encouraging him

in proceeding book writing. The authors also thank Lauren Cowles and her

team in Cambridge University Press, as well as all other staff members who

contributed to the book production process, for their help, as well as their

patience on the delays in our manuscript preparation. Lauren Cowles, Clare

Dennison, Adam Kratoska, and Amy He have coordinated the project since its

proposal, and Harsha Vardhanan in SPi Global has managed the copy-editing

process with Andy Saff.

The book writing project was partially supported by the following orga-

nizations: the German Research Foundation (GRK 1589/1) by the Federal

Ministry of Education and Research (BMBF) under the Berlin Big Data Center

project (Phase 1: FKZ 01IS14013A and Phase 2: FKz 01IS18025A), the

Japan Society for the Promotion of Science (15K16050), and the International

Research Center for Neurointelligence (WPI-IRCN) at The University of

Tokyo Institutes for Advanced Study.
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Nomenclature

a, b, c, . . . , A, B, C, . . . : Scalars.

a, b, c, . . . (bold-faced small letters) : Vectors.

A, B, C, . . . (bold-faced capital letters) : Matrices.

A,B,C, . . . (calligraphic capital letters) : Tensors or sets.

(·)l,m : (l, m)th element of a matrix.

⊤ : Transpose of a matrix or vector.

tr(·) : Trace of a matrix.

det (·) : Determinant of a matrix.

⊙ : Hadamard (elementwise) product.

⊗ : Kronecker product.

×n : n-mode tensor product.

|·| : Absolute value of a scalar. It applies element-wise for a vector

or matrix.

sign(·) : Sign operator such that sign(x) =

⎧⎪⎪⎨⎪⎪⎩
1 if x ≥ 0,

−1 otherwise.
It applies

elementwise for a vector or matrix.

{· · · } : Set consisting of specified entities.

{· · · }D : Dfold Cartesian product, i.e.,

X
D ≡ {(x1, . . . , xD)⊤; xd ∈ X for d = 1, . . . , D}.

# (·) : Cardinality (the number of entities) of a set.

R : The set of all real numbers.

R+ : The set of all nonnegative real numbers.

R++ : The set of all positive real numbers.

R
D : The set of all D-dimensional real (column) vectors.

xii
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Nomenclature xiii

[·, ·] : The set of real numbers in a range, i.e.,

[l, u] = {x ∈ R; l ≤ x ≤ u}.

[·, ·]D : The set of D-dimensional real vectors whose entries are in a

range, i.e., [l, u]D ≡ {x ∈ RD; l ≤ xd ≤ u for d = 1, . . . , D}.

R
L×M : The set of all L × M real matrices.

R
M1×M2×···×MN : The set of all M1 × M2 × · · · × MN real tensors.

I : The set of all integers.

I++ : The set of all positive integers.

C : The set of all complex numbers.

S
D : The set of all D × D symmetric matrices.

S
D
+

: The set of all D × D positive semidefinite matrices.

S
D
++

: The set of all D × D positive definite matrices.

D
D : The set of all D × D diagonal matrices.

D
D
+

: The set of all D × D positive semidefinite diagonal matrices.

D
D
++

: The set of all D × D positive definite diagonal matrices.

H
K−1
N

: The set of all possible histograms for N samples and

K categories, i.e., HK−1
N
≡ {x ∈ {0, . . . , N}K ;

∑K
k=1 xk = N}.

∆
K−1 : The standard (K − 1)-simplex, i.e.,

∆
K−1 ≡ {θ ∈ [0, 1]K ;

∑K
k=1 θk = 1}).

(a1, . . . , aM) : Column vectors of A, i.e., A = (a1, . . . , aM) ∈ RL×M .

(̃a1, . . . , ãL) : Row vectors of A, i.e., A = (̃a1, . . . , ãL)⊤ ∈ RL×M .

Diag(·) : Diagonal matrix with specified diagonal elements, i.e.,

(Diag(x))l,m =

⎧⎪⎪⎨⎪⎪⎩
xl if l = m,

0 otherwise.

diag(·) : Column vector consisting of the diagonal entries of a matrix, i.e.,

(diag(X))l = Xl,l.

vec(·) : Vectorization operator concatenating all column vectors of a matrix

into a long column vector, i.e., vec(A) = (a⊤
1

, . . . , a⊤
M

)⊤ ∈ RLM

for a matrix A = (a1, . . . , aM) ∈ RL×M .

ID : D-dimensional (D × D) identity matrix.

Γ : A diagonal matrix.

Ω : An orthogonal matrix.

ek : One of K expression, i.e., ek = (0, . . . , 0,

kth︷︸︸︷
1 , 0, . . . , 0︸������������������������︷︷������������������������︸
K

)⊤ ∈ {0, 1}K .

1K : K-dimensional vector with all elements equal to one, i.e.,

ek = (1, . . . , 1︸��︷︷��︸
K

)⊤.
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xiv Nomenclature

GaussD(µ,Σ) : D-dimensional Gaussian distribution with mean

µ and covariance Σ.

MGaussD1,D2
(M,Σ ⊗Ψ) : D1 × D2 dimensional matrix variate Gaussian

distribution with mean M and covariance Σ ⊗Ψ .

Gamma(α, β) : Gamma distribution with shape parameter α

and scale parameter β.

InvGamma(α, β) : Inverse-Gamma distribution with shape parameter

α and scale parameter β.

WishartD(V, ν) : D-dimensional Wishart distribution with scale

matrix V and degree of freedom ν.

InvWishartD(V, ν) : D-dimensional inverse-Wishart distribution with

scale matrix V and degree of freedom ν.

Multinomial(θ, N) : Multinomial distribution with event probabilities

θ and number of trials N.

Dirichlet(φ) : Dirichlet distribution with concentration

parameters φ.

Prob(·) : Probability of an event.

p(·), q(·) : Probability distribution (probability mass function for discrete

random variables, and probability density function for

continuous random variables). Typically p is used for a

model distribution and q is used for the true distribution.

r(·) : A trial distribution (a variable of a functional) for approximation.

〈 f (x)〉p(x) : Expectation value of f (x) over distribution p(x), i.e.,

〈 f (x)〉p(x) ≡
∫

f (x)p(x)dx.

·̂ : Estimator for an unknown variable, e.g., x̂ and Â are estimators

for a vector x and a matrix A, respectively.

Mean(·) : Mean of a random variable.

Var(·) : Variance of a random variable.

Cov(·) : Covariance of a random variable.

KL(·||·) : Kullbuck–Leibler divergence between distributions, i.e.,

KL(p||q) ≡
〈
log

p(x)

q(x)

〉
p(x)

.

δ(µ; µ̂) : Dirac delta function located at µ̂. It also denotes its

approximation (called Pseudo-delta function) with its

entropy finite.

GE : Generalization error.

TE : Training error.

F : Free energy.
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Nomenclature xv

O( f (N)) : A function such that lim supN→∞ |O( f (N))/ f (N)| < ∞.

o( f (N)) : A function such that limN→∞ o( f (N))/ f (N) = 0.

Ω( f (N)) : A function such that lim infN→∞ |Ω( f (N))/ f (N)| > 0

ω( f (N)) : A function such that limN→∞ |ω( f (N))/ f (N)| = ∞.

Θ( f (N)) : A function such that lim supN→∞ |Θ( f (N))/ f (N)| < ∞

and lim infN→∞ |Θ( f (N))/ f (N)| > 0.

Op( f (N)) : A function such that lim supN→∞

∣∣∣Op( f (N))/ f (N)
∣∣∣ < ∞

in probability.

op( f (N)) : A function such that limN→∞ op( f (N))/ f (N) = 0 in probability.

Ωp( f (N)) : A function such that lim infN→∞

∣∣∣Ωp( f (N))/ f (N)
∣∣∣ > 0

in probability

ωp( f (N)) : A function such that limN→∞

∣∣∣ωp( f (N))/ f (N)
∣∣∣ = ∞

in probability.

Θp( f (N)) : A function such that lim supN→∞

∣∣∣Θp( f (N))/ f (N)
∣∣∣ < ∞

and lim infN→∞

∣∣∣Θp( f (N))/ f (N)
∣∣∣ > 0 in probability.
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