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Bayesian Learning

Bayesian learning is an inference method based on the fundamental law

of probability, called the Bayes theorem. In this first chapter, we introduce

the framework of Bayesian learning with simple examples where Bayesian

learning can be performed analytically.

1.1 Framework

Bayesian learning considers the following situation. We have observed a set

D of data, which are subject to a conditional distribution p(D|w), called the

model distribution, of the data given unknown model parameter w. Although

the value of w is unknown, vague information on w is provided as a prior

distribution p(w). The conditional distribution p(D|w) is also called the model

likelihood when it is seen as a function of the unknown parameter w.

1.1.1 Bayes Theorem and Bayes Posterior

Bayesian learning is based on the following basic factorization property of the

joint distribution p(D, w):

p(w|D)︸��︷︷��︸
posterior

p(D)︸︷︷︸
marginal

= p(D, w)︸���︷︷���︸
joint

= p(D|w)︸��︷︷��︸
likelihood

p(w)︸︷︷︸
prior

, (1.1)

where the marginal distribution is given by

p(D) =

∫

W

p(D, w)dw =

∫

W

p(D|w)p(w)dw. (1.2)

Here, the integration is performed in the domain W of the parameter w.

Note that, if the domain W is discrete, integration should be replaced with
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4 1 Bayesian Learning

summation, i.e., for any function f (w),
∫

W

f (w)dw→
∑

w′∈W

f (w′).

The posterior distribution, the distribution of the unknown parameter w

given the observed data setD, is derived by dividing both sides of Eq. (1.1) by

the marginal distribution p(D):

p(w|D) =
p(D, w)

p(D)
∝ p(D, w). (1.3)

Here, we emphasized that the posterior distribution is proportional to the joint

distribution p(D, w) because the marginal distribution p(D) is a constant (as

a function of w). In other words, the joint distribution is an unnormalized

posterior distribution. Eq. (1.3) is called the Bayes theorem, and the posterior

distribution computed exactly by Eq. (1.3) is called the Bayes posterior when

we distinguish it from its approximations.

Example 1.1 (Parametric density estimation) Assume that the observed data

D = {x(1), . . . , x(N)} consist of N independent and identically distributed (i.i.d.)

samples from the model distribution p(x|w). Then, the model likelihood is

given by p(D|w) =
∏N

n=1 p(x(n)|w), and therefore, the posterior distribution

is given by

p(w|D) =

∏N
n=1 p(x(n)|w)p(w)∫ ∏N

n=1 p(x(n)|w)p(w)dw
∝

N∏

n=1

p(x(n)|w)p(w).

Example 1.2 (Parametric regression) Assume that the observed data D =

{(x(1), y(1)), . . . , (x(N), y(N))} consist of N i.i.d. input–output pairs from the

model distribution p(x, y|w) = p(y|x, w)p(x). Then, the likelihood function

is given by p(D|w) =
∏N

n=1 p(y(n)|x(n), w)p(x(n)), and therefore, the posterior

distribution is given by

p(w|D) =

∏N
n=1 p(y(n)|x(n), w)p(w)∫ ∏N

n=1 p(y(n)|x(n), w)p(w)dw
∝

N∏

n=1

p(y(n)|x(n), w)p(w).

Note that the input distribution p(x) does not affect the posterior, and accord-

ingly is often ignored in practice.

1.1.2 Maximum A Posteriori Learning

Since the joint distribution p(D, w) is just the product of the likelihood

function and the prior distribution (see Eq. (1.1)), it is usually easy to
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1.1 Framework 5

compute. Therefore, it is relatively easy to perform maximum a posteriori

(MAP) learning, where the parameters are point-estimated so that the posterior

probability is maximized, i.e.,

ŵ
MAP
= argmax

w

p(w|D) = argmax
w

p(D, w). (1.4)

MAP learning includes maximum likelihood (ML) learning,

ŵ
ML
= argmax

w

p(D|w), (1.5)

as a special case with the flat prior p(w) ∝ 1.

1.1.3 Bayesian Learning

On the other hand, Bayesian learning requires integration of the joint distri-

bution with respect to the parameter w, which is often computationally hard.

More specifically, performing Bayesian learning means computing at least one

of the following quantities:

Marginal likelihood (zeroth moment)

p(D) =

∫
p(D, w)dw. (1.6)

This quantity has been already introduced in Eq. (1.2) as the normalization

factor of the posterior distribution. As seen in Section 1.1.5 and subsequent

sections, the marginal likelihood plays an important role in model selection

and hyperparameter estimation.

Posterior mean (first moment)

ŵ = 〈w〉p(w|D) =
1

p(D)

∫
w · p(D, w)dw, (1.7)

where 〈·〉p denotes the expectation value over the distribution p, i.e., 〈·〉p(w) =∫
·p(w)dw. This quantity is also called the Bayesian estimator. The Bayesian

estimator or the model distribution with the Bayesian estimator plugged in (see

the plug-in predictive distribution (1.10)) can be the final output of Bayesian

learning.

Posterior covariance (second moment)

Σ̂w =

〈
(w − ŵ)(w − ŵ)⊤

〉
p(w|D)

=
1

p(D)

∫
(w − ŵ)(w − ŵ)⊤p(D, w)dw, (1.8)
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6 1 Bayesian Learning

where ⊤ denotes the transpose of a matrix or vector. This quantity provides

the credibility information, and is used to assess the confidence level of the

Bayesian estimator.

Predictive distribution (expectation of model distribution)

p(Dnew|D) =
〈
p(Dnew|w)

〉
p(w|D) =

1

p(D)

∫
p(Dnew|w)p(D, w)dw, (1.9)

where p(Dnew|w) denotes the model distribution on unobserved new dataDnew.

In the i.i.d. case such as Examples 1.1 and 1.2, it is sufficient to compute the

predictive distribution for a single new sampleDnew
= {x}.

Note that each of the four quantities (1.6) through (1.9) requires to compute the

expectation of some function f (w) over the unnormalized posterior distribution

p(D, w) on w, i.e.,
∫

f (w)p(D, w)dw. Specifically, the marginal likelihood,

the posterior mean, and the posterior covariance are the zeroth, the first, and

the second moments of the unnormalized posterior distribution, respectively.

The expectation is analytically intractable except for some simple cases, and

numerical computation is also hard when the dimensionality of the unknown

parameter w is high. This is the main bottleneck of Bayesian learning, with

which many approximation methods have been developed to cope.

It hardly happens that the first moment (1.7) or the second moment (1.8)

are computationally tractable but the zeroth moment (1.6) is not. Accordingly,

we can say that performing Bayesian learning on the parameter w amounts to

obtaining the normalized posterior distribution p(w|D). It sometimes happens

that computing the predictive distribution (1.9) is still intractable even if the

zeroth, the first, and the second moments can be computed based on some

approximation. In such a case, the model distribution with the Bayesian

estimator plugged in, called the plug-in predictive distribution,

p(Dnew|ŵ), (1.10)

is used for prediction in practice.

1.1.4 Latent Variables

So far, we introduced the observed data set D as a known variable, and the

model parameter w as an unknown variable. In practice, more varieties of

known and unknown variables can be involved.

Some probabilistic models have latent variables (or hidden variables) z,

which can be involved in the original model, or additionally introduced for

www.cambridge.org/9781107076150
www.cambridge.org


Cambridge University Press
978-1-107-07615-0 — Variational Bayesian Learning Theory
Shinichi Nakajima , Kazuho Watanabe , Masashi Sugiyama 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.1 Framework 7

computational reasons. They are typically attributed to each of the observed

samples, and therefore have large degrees of freedom. However, they are just

additional unknown variables, and there is no reason in inference to distinguish

them from the model parameters w.1 The joint posterior over the parameters

and the latent variables is given by Eq. (1.3) with w and p(w) replaced with

w = (w, z) and p(w) = p(z|w)p(w), respectively.

Example 1.3 (Mixture models) A mixture model is often used for parametric

density estimation (Example 1.1). The model distribution is given by

p(x|w) =

K∑

k=1

αk p(x|τk), (1.11)

where w = {αk, τk;αk ≥ 0,
∑K

k=1 αk = 1}K
k=1

is the unknown parameters. The

mixture model (1.11) is the weighted sum of K distributions, each of which

is parameterized by the component parameter τk. The domain of the mixing

weights α = (α1, . . . ,αK)⊤, also called as the mixture coefficients, forms the

standard (K − 1)-simplex, denoted by ∆K−1 ≡ {α ∈ RK
+

;
∑K

k=1 αk = 1} (see

Figure 1.1). Figure 1.2 shows an example of the mixture model with three

one-dimensional Gaussian components.

The likelihood,

p(D|w) =

N∏

n=1

p(x(n)|w),

=

N∏

n=1

⎛⎜⎜⎜⎜⎜⎝
K∑

k=1

αk p(x|τk)

⎞⎟⎟⎟⎟⎟⎠ , (1.12)

α1

α2

α3

α1 + α2 + α3 = 1

Figure 1.1 (K − 1)-simplex, ∆K−1, for K = 3.

1 For this reason, the latent variables z and the model parameters w are also called local latent

variables and global latent variables, respectively.
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Figure 1.2 Gaussian mixture.

for N observed i.i.d. samples D = {x(1), . . . , x(N)} has O(KN) terms, which

makes even ML learning intractable. This intractability arises from the summa-

tion inside the multiplication in Eq. (1.12). By introducing latent variables, we

can turn this summation into a multiplication, and make Eq. (1.12) tractable.

Assume that each sample x belongs to a single component k, and is drawn

from p(x|τk). To describe the assignment, we introduce a latent variable

z ∈ Z ≡ {ek}
K
k=1

associated with each observed sample x, where ek ∈ {0, 1}K is

the K-dimensional binary vector, called the one-of-K representation, with one

at the kth entry and zeros at the other entries:

ek = (0, . . . , 0,

kth︷︸︸︷
1 , 0, . . . , 0︸������������������������︷︷������������������������︸
K

)⊤.

Then, we have the following model:

p(x, z|w) = p(x|z, w)p(z|w), (1.13)

where p(x|z, w) =

K∏

k=1

{p(x|τk)}zk , p(z|w) =

K∏

k=1

α
zk

k
.

The conditional distribution (1.13) on the observed variable x and the latent

variable z given the parameter w is called the complete likelihood.

Note that marginalizing the complete likelihood over the latent variable

recovers the original mixture model:

p(x|w) =

∫

Z

p(x, z|w)dz =
∑

z∈{ek}
K
k=1

K∏

k=1

{αk p(x|τk)}zk =

K∑

k=1

αk p(x|τk).

This means that, if samples are generated from the model distribution (1.13),

and only x is recorded, the observed data follow the original mixture model

(1.11).
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1.1 Framework 9

In the literature, latent variables tend to be marginalized out even in

MAP learning. For example, the expectation-maximization (EM) algorithm

(Dempster et al., 1977), a popular MAP solver for latent variable models,

seeks a (local) maximizer of the posterior distribution with the latent variables

marginalized out, i.e.,

ŵ
EM
= argmax

w

p(w|D) = argmax
w

∫

Z

p(D, w, z)dz. (1.14)

However, we can also maximize the posterior jointly over the parameters and

the latent variables, i.e.,

(ŵ
MAP−hard

, ẑ
MAP−hard

) = argmax
w,z

p(w, z|D) = argmax
w,z

p(D, w, z). (1.15)

For clustering based on the mixture model in Example 1.3, the EM algorithm

(1.14) gives a soft assignment, where the expectation value ẑ
EM
∈ ∆K−1 ⊂

[0, 1]K is substituted into the joint distribution p(D, w, z), while the joint

maximization (1.15) gives the hard assignment, where the optimal assignment

ẑ
MAP−hard

∈ {ek}
K
k=1
⊂ {0, 1}K is looked for in the binary domain.

1.1.5 Empirical Bayesian Learning

In many practical cases, it is reasonable to use a prior distribution parame-

terized by hyperparameters κ. The hyperparameters can be tuned by hand or

based on some criterion outside the Bayesian framework. A popular method of

the latter is the cross validation, where the hyperparameters are tuned so that

an (preferably unbiased) estimator of the performance criterion is optimized.

In such cases, the hyperparameters should be treated as known variables when

Bayesian learning is performed.

On the other hand, the hyperparameters can be estimated within the

Bayesian framework. In this case, there is again no reason to distinguish the

hyperparameters from the other unknown variables (w, z). The joint posterior

over all unknown variables is given by Eq. (1.3) with w and p(w) replaced

with w = (w, κ, z) and p(w) = p(z|w)p(w|κ)p(κ), respectively, where p(κ) is

called a hyperprior. A popular approach, called empirical Bayesian (EBayes)

learning (Efron and Morris, 1973), applies Bayesian learning on w (and z) and

point-estimate κ, i.e.,

κ̂
EBayes

= argmax
κ

p(D, κ) = argmax
κ

p(D|κ)p(κ),

where p(D|κ) =

∫
p(D, w, z|κ)dwdz.
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10 1 Bayesian Learning

Here the marginal likelihood p(D|κ) is seen as the likelihood of the hyperpa-

rameter κ, and MAP learning is performed by maximizing the joint distribution

p(D, κ) of the observed dataD and the hyperparameter κ, which can be seen as

an unnormalized posterior distribution of the hyperparameter. The hyperprior

is often assumed to be flat: p(κ) ∝ 1.

With an appropriate design of priors, empirical Bayesian learning combined

with approximate Bayesian learning is often used for automatic relevance

determination (ARD), where irrelevant degrees of freedom of the statistical

model are automatically pruned out. Explaining the ARD property of approxi-

mate Bayesian learning is one of the main topics of theoretical analysis in Parts

III and IV.

1.2 Computation

Now, let us explain how Bayesian learning is performed in simple cases. We

start from introducing conjugacy, an important notion in performing Bayesian

learning.

1.2.1 Popular Distributions

Table 1.1 summarizes several distributions that are frequently used as a model

distribution (or likelihood function) p(D|w) or a prior distribution p(w) in

Bayesian learning. The domain X of the random variable x and the domain

W of the parameters w are shown in the table.

Some of the distributions in Table 1.1 have complicated function forms,

involving Beta or Gamma functions. However, such complications are mostly

in the normalization constant, and can often be ignored when it is sufficient

to find the shape of a function. In Table 1.1, the normalization constant is

separated by a dot, so that one can find the simple main part. As will be

seen shortly, we often refer to the normalization constant when we need to

perform integration of a function, which is in the same form as the main part

of a popular distribution.

Below we summarize abbreviations of distributions:

GaussM(x;µ,Σ) ≡
1

(2π)M/2 det (Σ)1/2
· exp

(
−

1

2
(x − µ)⊤Σ−1(x − µ)

)
,

(1.16)

Gamma(x;α, β) ≡
βα

Γ(α)
· xα−1 exp(−βx), (1.17)
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