Principles and Applications of Metal Rolling

This is a book written by a practitioner. It is somewhat different from a normal textbook involving machines and equipment in the field of Mechanical Engineering. Generally stress is given to the theories and principles involved and processes are explained in great detail. There is no doubt that these are essential for an engineer. But it is equally important for an engineer to know the basic design, working principle and operation of various machines/equipment used for conversion of raw materials into desired products. The introduction of laboratories, workshops and industrial tours help fill this void to some degree. Yet, engineering curriculum retains the deficiency.

Meant for undergraduate and graduate students, this book attempts to fill the void in the sub-field ‘Rolling Process’. It also intends serving as a reference book for practicing engineers. It begins with comprehensive coverage of rolling processes and the mechanics of rolling, which is the theoretical content of the subject. This is followed by a chapter on ‘rolling practices’ that highlights plant level procedures and practices employed by the rollers for producing desired products. The book concludes with the description, operation and design principles of various equipment, mechanisms and systems used inside a rolling plant.

Siddhartha Ray is professor in the Mechanical Engineering Department and Dean (UG Programmes) at Heritage Institute of Technology, Kolkata. Earlier he taught, for a decade, at the National Institute of Technical Teachers’ Training & Research, Kolkata, where he also served as the Director for about two and half years. Before joining the academia in 2001 Ray spent more than thirty years in various industries, designing and developing machines and systems for rolling mills and other kinds of material handling plants. He has published a number of technical and research papers, and he also holds two patents. Besides teaching and research, he enjoys writing popular science books and articles in Bengali.
Principles and Applications of Metal Rolling

Siddhartha Ray
This book is dedicated to the memory of my mother

Sadhana Roy

She remains the main source of inspiration in my life.
Contents

List of Figures x
List of Tables xviii
List of Symbols xix
Preface xx
Acknowledgments xxiii

1. Introduction to Rolling Process 1
 1.1 Definition of Rolling Process 1
 1.2 Hot and Cold Rolling Processes 2
 1.2.1 Hot rolling 2
 1.2.2 Cold rolling 3
 1.3 Brief History of Rolling 5
 1.3.1 The early history 5
 1.3.2 Modern steel rolling plants 6
 1.3.3 Modern non-ferrous rolling plants 7
 1.3.4 Modern cold rolling facilities 8
 1.4 Deformation of Materials 9
 1.4.1 Elastic and plastic deformation 9
 1.4.2 Size effect and strain hardening 12
 1.4.3 Mechanical working and recrystallization 14
 1.4.4 Hot and cold rolling and recrystallization 15
 1.5 Classification of Rolling Mills and Rolling Stands 17
 1.5.1 Classification 17
 1.5.2 Rolling mill stands 20
 1.5.3 Roll arrangement in mill stands 20

2. Mechanics of Rolling 30
 2.1 Characteristics of Rolling 30
 2.1.1 Draught and reduction 31
 2.1.2 Elongation 31
 2.1.3 Spread 32
2.1 Contact angle, angle of bite and area of contact
2.1.4 Contact angle, angle of bite and area of contact 33
2.1.5 Rolling friction 34
2.1.6 Neutral point and forward slip 35
2.1.7 Forward slip and effective working diameter in grooved rolls 36
2.1.8 Pitch line and rolling line 38
2.1.9 Grooved rolls and passes 39
2.1.10 Spread in section rolling 42
2.1.11 Elastic deformation of components vis-à-vis set roll gap 46
2.1.12 Roll flattening 47
2.1.13 Dark mode rolling 49
2.1.14 Roll bending and roll camber 49
2.1.15 Pass schedule 50

2.2 Stresses in Rolling
2.2.1 Distribution of stress and strain across rolled strip thickness 52
2.2.2 Contact stresses in two-dimensional deformation 54
2.2.3 Specific pressure in the case of slip with a constant coefficient of friction (dry friction) 60
2.2.4 Contact stress under alternative theories of contact friction 72

2.3 Rolling Force
2.3.1 Direction of forces in simple rolling 75
2.3.2 Determination of roll separating force 78
2.3.3 Formulae for calculation of mean rolling pressure 93

2.4 Rolling Torque and Power
2.4.1 Lever arm method 98
2.4.2 Rolling power calculation 101

3. Rolling Practices
3.1 Layout of Stands
3.1.1 Single stand 105
3.1.2 Multi stands side by side 105
3.1.3 Looping train 106
3.1.4 Two-stand tandem mill 107
3.1.5 Stepped trains of side by side stands 107
3.1.6 Tandem continuous stands 107
3.1.7 Semi-continuous mill layout 109
3.1.8 Cross-country mill layout 109
3.1.9 Chequerboard mill layout 109

3.2 Rolling Applications
3.2.1 Introduction 110
3.2.2 Rolling of steel blooms, slabs and billets 110
3.2.3 Rolling of plates 122
3.2.4 Rolling of bars and rods 126
3.2.5 Rolling heavy sections 137
3.2.6 Rolling of non-ferrous metals and alloys 143
3.2.7 Cold rolling of sheet, strip and foil 146

4. Rolling Equipment and Systems 168
4.1 Mill Stand Components and Mechanisms 168
 4.1.1 Rolling mill rolls 169
 4.1.2 Roll neck bearings 186
 4.1.3 Roll chocks 197
 4.1.4 Mill housings 201
 4.1.5 Mechanisms for roll adjustment and roll balance 205
 4.1.6 Roll change device 217
 4.1.7 Sendzimir cluster mills 220
 4.1.8 Guides and repeaters 223
 4.1.9 Guide tables and loopers 228
4.2 Mill Drive 229
 4.2.1 Mill couplings 229
 4.2.2 Gear box and pinion stand 232
 4.2.3 Spindles 237
 4.2.4 Rolling mill electrics 241
4.3 Auxiliary Equipment and Systems 252
 4.3.1 Shears and saws 252
 4.3.2 Straightening and leveling machines 259
 4.3.3 Coilers and decoilers 263
 4.3.4 Roller table 271
 4.3.5 Miscellaneous equipment 276
 4.3.6 Automatic gauge and shape control system 277
 4.3.7 Roll lubrication and cooling system 283

Suggested Readings 291
Index 292
List of Figures

1.1 Products produced by hot rolling 3
1.2 Schematic flowchart for the production of various finished and semi-finished steel products which pass through rolling process 4
1.3 Variation of net interatomic force with interatomic distance 9
1.4 Scheme of plastic deformation in perfect crystal 10
1.5 Mechanics of slip in perfect crystal 11
1.6 Crystal deformation through movement of edge dislocation 12
1.7 Carpet analogy 12
1.8 Strain hardening effect 13
1.9 Effect of grain size on strength and ductility of annealed brass 14
1.10 Effects of mechanical working 15
1.11 Schematic representation of the hot-rolling process, showing the deformation and recrystallization of the grains of metal being rolled 17
1.12 Comparison of conventional and prestressed mill stand for 10.75" & 18"×18" mill 28
1.13 4-Hi hydraulic stand with roll load cylinder 29
2.1 Simple rolling process with rectangular stock 31
2.2 Deformation of billet in rolling 32
2.3 Entry of material into the roll gap 34
2.4 Position of neutral point 35
2.5 Initial and final contact conditions-oval-round 37
2.6 Position of effective roll dia. for an oval groove 38
2.7 Underdraught and overdraught in rolling 39
2.8 Grooved roll drawing showing collars and collar holes 40
2.9 Open and closed passes 41
2.10 Causes of end thrust 41
2.11 Common types of passes 42
2.12 Equivalent rectangle method 43
2.13 The Ekelund spread nomogram 45
2.14 Effect of elastic deformation on final stock thickness 47
2.15 Roll flattening phenomenon 48
2.16 Dark mode rolling 49
2.17 Horizontal projection of the peripheral roll velocity 53
2.18 Above: diagram showing the velocity of a rolled strip at different points in its cross-section as it passes through the deformation zone. Below: diagram showing the velocity distribution for different cross-sectional depths 54
2.19 The variation of velocity with depth in the rolled strip shown at various points along its length, with \(hm:l > 2\) and \(D \cos \alpha > hn\) where \(D\) = roll diameter and \(hn\) is strip thickness at neutral zone 54
2.20 Elementary forces acting on the rolled metal in the zone of backward slip 55
2.21 Determination of \(x\) and \(\frac{h_x}{2}\) 61
2.22 The distribution of the specific pressure along the arc of contact during slipping with dry friction \(\tau = \mu p_x\) 65
2.23 Theoretical distribution curves of the specific pressure along the arc of contact (with \(\tau = \mu p_x\)) for two-dimensional rolling with different coefficients of friction with other rolling parameters of: reduction = 30\%, \(\alpha = 5\,\text{40'}\) and \(\frac{D}{h_1} = 86\). 68
2.24 Theoretical distribution curves of the specific pressure over the arc of contact (with \(\tau = \mu p_x\)) for two-dimensional rolling with different reductions (\(\Delta h/h_0 = 0.1, 0.2, 0.3\) and 0.5) and keeping output thickness constant (\(d/h_1 = 200\)), other conditions are identical, work hardening effect is neglected, and \(\mu = 0.2\) 69
2.25 Theoretical distribution curves of the specific pressure along the arc of contact (with \(\tau = \mu p_x\)) for two-dimensional rolling with rolls of different diameters:\(D/h_1 = 100, 200, 350\); reduction of 30\% and \(\mu = 0.3\). 70
2.26 Theoretical distribution curves of the specific pressure along the arc of contact (with \(\tau = \mu p_x\)) in the case of two-dimensional rolling with different tension 71
2.27 Theoretical distribution curves of the specific pressure along the arc of contact (with \(\tau = \mu p_x\)) in the case of two-dimensional rolling with different arcs of contact but with the same horizontal projection of the arc of contact: Curve 1: \(\tan \phi_x < \mu\) along the entire arc of contact; Curve 2: \(\tan \phi_x > \mu\) at the beginning of the arc of contact 71
2.28 The distribution of specific pressure and specific friction forces along the arc of contact during two-dimensional rolling according to different theories: dry friction (Von Karman), constant friction force (Siebel), and viscous friction (Nadai).

2.29 Variation of the specific pressure and specific friction forces along the arc of contact for two-dimensional rolling with different l/h_m ratios: (a) $l/h_m > 5$; (b) $l/h_m (2–5)$; (c) $l/h_m (0.5–2)$; (d) $l/h_m < 0.5$

2.30 Resultants of the elementary forces exerted by the roll on the rolled metal.

2.31 Direction of overall resultant forces exerted by the roll on the rolled metal in a simple rolling process.

2.32 Direction of the resultant forces applied to the rolls in a simple rolling process.

2.33 Forces acting on the roll.

2.34 Types of reduction effected by rolling: (a) a rhombus from a rhombus; (b) an oval from a square; (c) a square from an oval; (d) a circle from an oval.

2.35 The effect of the reduction during cold rolling on the yield point of steel (0.1% C), copper, and zinc.

2.36 Variation of the ultimate strength of mild steel with strain rate at various temperatures in °C (A. Nandai and M. Manjone).

2.37 Variation of yield stress of mild steel with 0.15% C with the strain rate when $\log_{10} \frac{h_0}{h_1} = 0.3$ for various temperature.

2.38 Variation of the coefficient, n'_o, which determines the effect of external friction on contact pressure, depending on δ at various $\Delta h/h_0$.

2.39 The effect of back and front tensions on the decrease in the specific pressure during the cold rolling of steel strip at reduction of 20%, 30%, and 40%.

2.40 Variation of the value of the coefficient C in formula 2.66 with ratio l_d/h (A. Geleji).

2.41 Variation with temperature of k_t of a plain carbon steels (C < 0.6%; Si < 0.5% and Mn < 0.8%), characterized by ultimate strengths of 40, 60, 80, and 100 kg/mm2 in the cold state (A. Geleji).

2.42 Variation of the ratio $p_m/2k$ with reduction for various ratio r/h_1 according to the formula of Sims.

2.43 Diagram illustrating the meaning of lever arm and torque.
List of Figures

3.1 Single stand layout 105
3.2 Three stands side by side 105
3.3 (a) Alternate 2-Hi looping train 106
3.3 (b) 2-Hi offset stands looping train 106
3.4 Two stand tandem mill 107
3.5 Stepped open train 107
3.6 Continuous stands with (a) group drive and (b) individual drive 108
3.7 Semi-continuous mill layout 108
3.8 Cross-country mill layout 109
3.9 Chequerboard mill layout 110
3.10 Layout of a 730/530 mm 12 stands continuous billet mill 111
3.11 Prevention of laps due to overfilling in bloom rolling 112
3.12 2-Hi blooming rolls and pass sequence- using a bullhead 114
3.13 Blooming rolls and pass sequence- using grooved passes 115
3.14 Roll of a slabbing mill 116
3.15 Billet mills of different types 118
3.16 Diamond–square pass sequence for a billet mill 121
3.17 Layout of a plate mill 125
3.18 Schematic layout of rolling equipment and shears in a 350 mm diameter continuous section mill 126
3.19 Layout of a bar and wire rod mill 128
3.20 Layout of a bar and wire–rod mill 129
3.21 Single plug method of cutting finishing pass for rounds 130
3.22 Determination of leading ovals 132
3.23 Comparison of square–oval and slug–oval method 134
3.24 Square–oval and oval square reduction– normal and gothic square 135
3.25 A typical oval–slug sequence of rolling rounds 136
3.26 Rolling of rounds by the oval–round method: 3/4 in. rounds from 4 in. billets in 12 passes 137
3.27 Layout of rolling stands and equipment in a rail and structural mill 138
3.28 Types of passes for rolling rails 138
3.29 Two types of rail rolling sequence (passes numbered in the order of rolling) 139
3.30 Basic type of passes for joist rolling 140
3.31 Pass sequences for beam rolling 141
3.32 Types of passes for rolling channels 142
3.33 Elevation of a three stand tandem cold strip mill 147
3.34 Stress curve- aluminum (pure and common alloys) 165
3.35 Stress curve- aluminum (strong alloys) 165
3.36 Roll pressure function – f3 166
List of Figures

3.37 Torque function – f5 166
3.38 Values of R1/R for reduction stress P/Δh as per Hitchcock’s formula 167
4.1 Plain roll 169
4.2 Grooved roll 170
4.3 Evenly distributed load centrally placed in the rolls 180
4.4 Determination of stress magnification factors 181
4.5 Dependence of the coefficient of friction of textolite bearings, with water lubrication, on sliding speed at various specific pressures. 188
4.6 Arrangement of linings in open bearing in two-high and three-high mills 188
4.7 Fabric bearing 189
4.8 Radial thrust oil–film bearing for back-up roll of 2500 mm wide continuous cold rolling mill 189
4.9 Diagram of boring of sleeve–lining of bearing 190
4.10 Double row spherical roller bearing arrangement on the roll neck of a medium section mill 192
4.11 Back-up roll neck of a four-high hot mill fitted with four row cylindrical roller bearing and double acting taper roller thrust bearing. 193
4.12 Cut sectional view of a four-row taper roller tapered bore bearing assembly fitted on a back-up roll neck of a 4-Hi mill 194
4.13 Hydraulic mounting of a bearing using a hydraulic nut 195
4.14 Arrangement of work roll and backup roll chocks within window gap 198
4.15 Dimensions of a 2-Hi work roll chock 199
4.16 Dimensions of a 2-Hi back-up roll chock 200
4.17 Approximate minimum work roll chock sections of a four high mill. These values are subject to change by the mill equipment designer to suit specific mill 200
4.18 Stand housings 201
4.19 Housing under tension 202
4.20 Various cross-sections of housing posts 203
4.21 General view of the housing assembly of a 1000 mm blooming mill. Weight of one housing 62 t, material-graded cast steel 204
4.22 General view of the housing assembly of 500 and 1200 × 2500 mm four-high stand in a tandem cold rolling mill. Weight of one housing 111 T 205
4.23 Schemes of manual top roll adjusting mechanisms 207
4.24 Stand of 1000 mm blooming mill (lateral cross-section) 209
<table>
<thead>
<tr>
<th>Figure Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.25</td>
<td>Kinematic diagram of drive for screw-downs in 1000 mm blooming mill</td>
<td>210</td>
</tr>
<tr>
<td>4.26</td>
<td>Stand of a 1100 mm blooming mill with hydraulic top roll balancing</td>
<td>211</td>
</tr>
<tr>
<td>4.27</td>
<td>Diagram of top roll adjusting mechanism with spring counterbalance arrangement in a three-high plate mill</td>
<td>211</td>
</tr>
<tr>
<td>4.28</td>
<td>Diagram of screw-down drive in a four-high 500 and 1250 × 1700 reversing cold rolling mill. Gear ratio from motor to screw-down is 1080</td>
<td>212</td>
</tr>
<tr>
<td>4.29</td>
<td>Diagram of hydraulic roll balancing in four-high 610 and 1240 × 1680 stand</td>
<td>213</td>
</tr>
<tr>
<td>4.30</td>
<td>Safety devices: (a) safety sleeve, (b) wedge.</td>
<td>214</td>
</tr>
<tr>
<td>4.31</td>
<td>Axial adjustment of rolls rarely moved</td>
<td>215</td>
</tr>
<tr>
<td>4.32</td>
<td>Axial adjustment of rolls moved frequently</td>
<td>215</td>
</tr>
<tr>
<td>4.33</td>
<td>Axial fixing of plain roll mounted in roller or oil–film bearings by triangular fixing strips</td>
<td>216</td>
</tr>
<tr>
<td>4.34</td>
<td>Diagram of axial fixing of rolls in four-high mill by hinged pawl</td>
<td>216</td>
</tr>
<tr>
<td>4.35</td>
<td>Diagram of roll change with crane</td>
<td>218</td>
</tr>
<tr>
<td>4.36</td>
<td>Diagram of rack and pinion mechanism for changing roll with roll box</td>
<td>219</td>
</tr>
<tr>
<td>4.37</td>
<td>Diagram of sliding trolley mechanism for changing back-up rolls in a four-high mill</td>
<td>220</td>
</tr>
<tr>
<td>4.38</td>
<td>Roll arrangement of type 1-2-3-4 Sendzimir mill</td>
<td>221</td>
</tr>
<tr>
<td>4.39</td>
<td>Pressure saddles supporting backing bearing assembly in Sendzimir mill</td>
<td>222</td>
</tr>
<tr>
<td>4.40</td>
<td>Lateral adjustment of 1st intermediate rolls</td>
<td>223</td>
</tr>
<tr>
<td>4.41</td>
<td>Guides</td>
<td>224</td>
</tr>
<tr>
<td>4.42</td>
<td>Outside fastening of cramp bar by bolts</td>
<td>224</td>
</tr>
<tr>
<td>4.43</td>
<td>Fastening of side guide on cramp bar</td>
<td>225</td>
</tr>
<tr>
<td>4.44</td>
<td>Non-twist entry guide consisting of a box and side guides</td>
<td>225</td>
</tr>
<tr>
<td>4.45</td>
<td>Roller entry guide for ovals</td>
<td>226</td>
</tr>
<tr>
<td>4.46</td>
<td>Roller twist guide fixed at mill exit</td>
<td>227</td>
</tr>
<tr>
<td>4.47</td>
<td>Repeater with open looping trough</td>
<td>227</td>
</tr>
<tr>
<td>4.48</td>
<td>Scheme of a looper in skelp mill</td>
<td>229</td>
</tr>
<tr>
<td>4.49</td>
<td>Geared coupling</td>
<td>230</td>
</tr>
<tr>
<td>4.50</td>
<td>Improved shape of teeth in a geared coupling with bareling (elliptical cross-section)</td>
<td>230</td>
</tr>
<tr>
<td>4.51</td>
<td>Flexible coupling with spiral springs (Bibby) showing deformation of springs under loads</td>
<td>231</td>
</tr>
<tr>
<td>4.52</td>
<td>Diagram of 1, 2 and 3 stage reduction gear</td>
<td>232</td>
</tr>
<tr>
<td>4.53</td>
<td>Diagram of group reduction gears</td>
<td>233</td>
</tr>
</tbody>
</table>
List of Figures

4.54 Dimensioned drawing of a reduction gear box with gear ratio $i = 6.35$, maximum torque on slow-speed shaft 8.73 tm 235
4.55 Arrangement of pinions of different pinion stands 236
4.56 Sectional elevation view of a 2-Hi pinion stand 237
4.57 Diagram of arrangement of universal spindles 238
4.58 Wobbler coupling 238
4.59 Wobbler connection of breakdown 500 mm three-high section mill 239
4.60 Mill joint of universal spindle 240
4.61 Mill spindle with two half gear couplings at two ends 240
4.62 Spring balancing of spindles with arrangement of springs on one side 241
4.63 DC motor connection with series field required for high starting torque 242
4.64 DC motor connection with shunt field required for normal starting torque but speed increase with field weakening beyond base speed 243
4.65 DC motor connection with compound field. Best for high starting torque but good speed control 243
4.66 AC slip ring motor with rotor resistance control, suitable for controlled starting torque and current 244
4.67 3-phase synchronous motor with separate excitation 244
4.68 Three functions of a thyristor converter 245
4.69 AC VVVF drive 245
4.70 Torque control scheme 246
4.71 Large synchronous motors with variable frequency converter used for tandem hot strip mills 248
4.72 Typical electrical scheme for 6-stand tandem hot strip mill 248
4.73 (a) Mill DC motor control with thyristor converter. Both armature and field by DC voltage control with six pulse controller. A two quadrant operation 250
(b) Thyristor Converter with 12-pulse controller 250
4.74 Drive and control for a 4-High reversing cold rolling strip mill 251
4.75 Arrangement of shear blades 253
4.76 Motor operated shear with 1000 t shearing force for shearing blooms 254
4.77 Dimensioned drawing of a Multi-knife rotary shear with side scrap cutter for cold shearing of maximum 6 mm strips / sheets up to 1500 mm wide 256
4.78 Drum shear with feed rollers 1 and shear 2 257
4.79 Diagram of the movement of knives in two-drum flying shears operating from stationary position 257
4.80 Sliding frame circular saw
4.81 The most common type of saw tooth for hot cutting of steel
4.82 500 T straightening press
4.83 Arrangement of rolls in a straightening machine
4.84 Chequerboard arrangement of backup rolls in relation to bending roll
4.85 8-roll heavy section straightening machine side view
4.86 8-roll heavy section straightening machine front view
4.87 Diagram of rotation straightening machines with rolls set obliquely (driven rolls have rotary arrow; rolls taking part in the straightening process have vertical force arrows.)
4.88 Arrangement of tension coiling drums in a reversing cold rolling mill
4.89 (a) General view of coiler with overhung expanding mandrel
4.89 (b) Sectional view of an expanding /collapsing mandrel of a coiler
4.90 Roll type coiler with three wrapping rolls (upcoiler).
4.91 Diagram of multi-roll down coiler
4.92 Roll and drum machine for coiling strip up to 1550 mm wide
4.93 Diagram of laying rod reel, Edenborn type
4.94 General view of pay-off with overhung drum and slipping brake
4.95 Operation of double cone decoiler
4.96 Typical group driven receiving table of 1150 blooming mill
4.97 A typical dimensioned drawing of a Roller with separate drive by flanged motor through gear coupling
4.98 Diagram of light tilting table with balancing arrangements by weight
4.99 Diagram of roller drives for tilting tables
4.100 Diagram of primary mill manipulator with drive located on side
4.101 Diagram of a bobbin-type manipulator
4.102 4-Hi stand with roll load cylinder and hydraulic roll balancing arrangement
4.103 HAG control scheme
4.104 Tension measuring sensor roll
4.105 Schematic diagram of a re-circulating type roll coolant system
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Lowest recrystallization temperature of common metals</td>
<td>16</td>
</tr>
<tr>
<td>1.2</td>
<td>Classification of rolling mills by function</td>
<td>18</td>
</tr>
<tr>
<td>1.3</td>
<td>Roll arrangement and use of stands with horizontal rolls</td>
<td>20</td>
</tr>
<tr>
<td>1.4</td>
<td>Diagram of stands with vertical rolls and universal stands</td>
<td>25</td>
</tr>
<tr>
<td>1.5</td>
<td>Mill stands with inclined rolls</td>
<td>27</td>
</tr>
<tr>
<td>2.1</td>
<td>The coefficient of friction during hot rolling of non-ferrous metals</td>
<td>89</td>
</tr>
<tr>
<td>2.2</td>
<td>Coefficient of friction under cold rolling of different materials</td>
<td>90</td>
</tr>
<tr>
<td>2.3</td>
<td>Average values of λ for all results determined by Ford</td>
<td>99</td>
</tr>
<tr>
<td>2.4</td>
<td>Average values of λ' for all results determined by Ford</td>
<td>100</td>
</tr>
<tr>
<td>2.5</td>
<td>Values of the coefficient of friction for various types of roll-neck bearings</td>
<td>102</td>
</tr>
<tr>
<td>3.1</td>
<td>Typical slabbing mill pass schedule</td>
<td>117</td>
</tr>
<tr>
<td>3.2</td>
<td>Specifications of Sendzimir 20-Hi cold rolling mills</td>
<td>148</td>
</tr>
<tr>
<td>3.3</td>
<td>Recommended maximum pass reduction and maximum cumulative reduction in cold rolling of different metals and alloys</td>
<td>152</td>
</tr>
<tr>
<td>4.1</td>
<td>Maximum permitted angles of bite and $\Delta h/D$</td>
<td>171</td>
</tr>
<tr>
<td>4.2</td>
<td>Roll neck dimensions</td>
<td>173</td>
</tr>
<tr>
<td>4.3</td>
<td>Hardness figures, tensile strengths and approx. shear strength for steel rolls</td>
<td>178</td>
</tr>
<tr>
<td>4.4</td>
<td>Basic properties of textolite, lignofol, lignoston and bronze</td>
<td>187</td>
</tr>
<tr>
<td>4.5</td>
<td>Clearance between chock and window</td>
<td>199</td>
</tr>
</tbody>
</table>
List of Symbols

\(x, y, z \) \hspace{1cm} three rectangular coordinates

\(F \) \hspace{1cm} force

\(F_R \) \hspace{1cm} repulsive force

\(F_A \) \hspace{1cm} attractive force

\(r_o \) \hspace{1cm} inter-atomic distance

\(\tau_o \) \hspace{1cm} ultimate shear stress

\(G \) \hspace{1cm} modulus of rigidity

\(H_i \) \hspace{1cm} abbreviation of “High”, signifying number of rolls in a mill stand

\(h \) \hspace{1cm} thickness of stock/workpiece

\(h_i \) \hspace{1cm} input thickness

\(h_2, h_0 \) \hspace{1cm} output thickness after deformation through rolling

\(h_n \) \hspace{1cm} thickness at neutral axis

\(w, b \) \hspace{1cm} width of stock/workpiece

\(w_1, b_1 \) \hspace{1cm} Input width

\(w_2, b_2 \) \hspace{1cm} output width after deformation

\(w_m, b_m \) \hspace{1cm} mean width

\(A_1 \) \hspace{1cm} cross sectional area of stock/material at input

\(A_2 \) \hspace{1cm} cross sectional area of output after deformation

\(L_1 \) \hspace{1cm} length of stock/workpiece at input

\(L_2 \) \hspace{1cm} length of stock at output after deformation

\(\alpha \) \hspace{1cm} contact angle or angle of bite/contact

\(\Delta h_i (h_i - h_2), \delta \) \hspace{1cm} draught or reduction in height/thickness

\(E' \) \hspace{1cm} elongation factor

\(\Delta w, \Delta b_m, (b_2 - b_1) \) \hspace{1cm} spread

\(R, r \) \hspace{1cm} roll radius

\(D \) \hspace{1cm} roll diameter

\(l \) \hspace{1cm} projected length of arc of contact

\(\mu \) \hspace{1cm} coefficient of friction

\(N \) \hspace{1cm} neutral point

\(\alpha_n, \gamma \) \hspace{1cm} neutral point angle

\(v_1 \) \hspace{1cm} stock velocity at entry

\(v_2 \) \hspace{1cm} stock velocity at output

© in this web service Cambridge University Press
www.cambridge.org
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>set roll gap</td>
</tr>
<tr>
<td>γ</td>
<td>Poisson ratio</td>
</tr>
<tr>
<td>E</td>
<td>Young's modulus</td>
</tr>
<tr>
<td>Δf</td>
<td>mill stretch</td>
</tr>
<tr>
<td>R', r'</td>
<td>Deformed roll radius</td>
</tr>
<tr>
<td>h_m</td>
<td>Mean thickness of stock/workpiece</td>
</tr>
<tr>
<td>v_r, v_r'</td>
<td>Roll surface velocity</td>
</tr>
<tr>
<td>v_x</td>
<td>Roll surface velocity in the direction 'x'</td>
</tr>
<tr>
<td>ϕ</td>
<td>Angle subtended by a point on roll surface within roll bite</td>
</tr>
<tr>
<td>ϕ_x</td>
<td>Angle subtended by a point on roll surface at a distance x from roll axis</td>
</tr>
<tr>
<td>$\sigma_x, \sigma_y, \sigma_z$</td>
<td>Normal stresses</td>
</tr>
<tr>
<td>k, τ_s</td>
<td>Shear yield stress</td>
</tr>
<tr>
<td>τ_x</td>
<td>Contact shear stress</td>
</tr>
<tr>
<td>$\sigma_1, \sigma_2, \sigma_3$</td>
<td>Principal normal stresses</td>
</tr>
<tr>
<td>$\tau_{xy}, \tau_{yx}, \tau_{zx}$</td>
<td>Shear stresses</td>
</tr>
<tr>
<td>$\tau_{1x}, \tau_{2x}, \tau_{3x}$</td>
<td>Principal shear stresses</td>
</tr>
<tr>
<td>σ</td>
<td>Yield stress</td>
</tr>
<tr>
<td>σ_a</td>
<td>Actual resistance to deformation (tensile yield stress)</td>
</tr>
<tr>
<td>σ_t</td>
<td>Ultimate strength</td>
</tr>
<tr>
<td>σ_B</td>
<td>Tensile stress due to back tension</td>
</tr>
<tr>
<td>η</td>
<td>Coefficient of viscosity</td>
</tr>
<tr>
<td>F</td>
<td>Horizontal projection of contact area</td>
</tr>
<tr>
<td>σ_i</td>
<td>Tensile yield stress of annealed metal</td>
</tr>
<tr>
<td>T</td>
<td>Absolute temperature</td>
</tr>
<tr>
<td>s</td>
<td>Specific heat of metal</td>
</tr>
<tr>
<td>t</td>
<td>Rolling temperature, $^\circ$C</td>
</tr>
<tr>
<td>Δt</td>
<td>Time interval, seconds</td>
</tr>
<tr>
<td>A</td>
<td>Energy required to deform metal</td>
</tr>
<tr>
<td>W</td>
<td>Weight of metal in kg</td>
</tr>
<tr>
<td>u, ε</td>
<td>Strain rate, sec$^{-1}$</td>
</tr>
<tr>
<td>ε</td>
<td>Strain</td>
</tr>
<tr>
<td>p</td>
<td>Contact pressure between roll and stock</td>
</tr>
<tr>
<td>a</td>
<td>Length of lever arm</td>
</tr>
<tr>
<td>λ</td>
<td>Lever arm coefficient</td>
</tr>
<tr>
<td>T</td>
<td>Torque</td>
</tr>
<tr>
<td>kw</td>
<td>Kilo-watt</td>
</tr>
<tr>
<td>HP</td>
<td>Horse power</td>
</tr>
<tr>
<td>HAGC</td>
<td>Hydraulic automatic gauge control</td>
</tr>
<tr>
<td>EDC</td>
<td>Edge drop control</td>
</tr>
</tbody>
</table>
Preface

Organization of this book is somewhat different from a normal textbook involving machines and equipment, in the field of mechanical engineering. Generally, stress is given to the theories and principles involved and the processes are explained to a great detail. There is no doubt that these are essential for an engineer. But it is equally important for an engineer to know the basic design, working principles and operations of the various machines and equipment which are used in the practical field for conversion of the raw materials into desired products. Baring the subject of ‘Machine Tools’, in most other fields of manufacturing processes, available textbooks seem to be rather miserly in thorough discussions on the description, design, working principles of various machines and systems involved and practices followed in actual operation.

An attempt has been made to bridge this gap by introducing laboratory exercises and workshops along with industry visits, in the engineering curricula. More often than not these prove to be inadequate. It is next to impossible that an equipment or machine like a turbine, an extrusion press or a rolling mill can be installed in an academic institution. By observing the operation of a machine or system during a visit to an industrial plant, definitely a lot can be learned about the manufacturing process, but seldom can it give an idea about the working principles of the various mechanisms, their design details or about the intricacies of operational practices.

While teaching ‘Manufacturing Technology’ to MTech students at the National Institute of Technical Teachers’ Training and Research (NITTTR), Kolkata, I observed this shortcoming in my students and cherished the desire to bridge the gap as soon as possible. With 30 years’ experience in the industry in design, development and commissioning to operation plant and machinery (out of which more than half the period was in the field of Rolling Mills), I decided to write this book titled Principles and Applications of Metal Rolling.

This book is intended to cover undergraduate and postgraduate engineering curricula for ‘Rolling Technology’ in India and in other countries. It is also meant to be a reference book for practicing engineers working in the field of rolling mills. The first two chapters cover the rolling process and mechanics of rolling
comprehensively, which is the theoretical content of the process of rolling. The third chapter on 'Rolling Practices' highlights plant level procedures and practices employed by the rollers for producing desired products. The whole of the fourth chapter on 'Rolling Equipment and Systems' is devoted to the description, operation and design principles of various equipment, mechanisms and systems used in a rolling plant.

In preparing the book, help has been taken from some specialized books written and edited by experts and from the literature of equipment manufacturers. Acknowledgement and references to such books and literature have been made at appropriate places.

Suggestions and comments on the organization and contents of the book are welcome and may kindly be sent to the publisher or the author.
While writing this book I have received help, suggestions and encouragement from many of my ex-colleagues, friends and well wishers, which I gratefully acknowledge.

At the very outset I would like to express my appreciation to my MTech students of Manufacturing Technology course offered by the National Institute of Technical Teachers’ Training and Research (NITTTR), Kolkata. While teaching and discussing the subject of Rolling Technology with them, I got impetus to write the present book. I am indeed thankful to them.

During the writing of this book I have drawn upon the knowledge and experience I received while working with M/s Davy Ashmore India Ltd., in close contact with their collaborators in the UK – Davy Lowey Ltd. and Loewy Robertson Engineering Company of the UK, and later with M/s Tata Construction and Projects Limited. I would like to acknowledge my deep sense of gratitude to the following persons, who gave me the opportunity to work in the field of design and operation of Rolling Mills and also gave me all possible help and cooperation during the writing of this book: Late P. Sen, Ex.-M. D. of Davy Ashmore India Ltd. and my ex-colleagues P. K. Bera and A. K. Mitra. I am particularly indebted to S. Bhattacharya from the same organization, who advised me while writing the topic on Mill Electrics.

I am also grateful to friends from the Davy Group of companies in the UK, namely: T. Shiemeld, T. Smith, A. F. Uff, D. Fretwell and others who helped me with information and material on the subject as and when I needed them. I am thankful to S. Majumdar, Ex President of Hindalco and colleagues at NITTTR, Kolkata and Heritage Institute of Technology, Kolkata for advising and encouraging me during the preparation of the book.

My thanks are also due to T. K. Dutta, an ex-colleague of Davy Ashmore, who joined later M/s. SMS Demag, India, for giving me valuable suggestions on Roll Lubrication and Cooling System.

I am thankful to Kingshuk Ghosh, the DTP operator of my department at NITTTR, who untiringly finished the entire manuscript, working beyond his working hours. My thanks go to G. Patra for preparing some of the diagrams using CAD.
xxiv Acknowledgments

I am grateful to my wife Dipali Ray and other family members for their constant encouragement and sacrifices during the preparation of the book.

Finally, my thanks are to the Cambridge University Press for readily accepting to publish the book.