Principles and Applications of Metal Rolling

This is a book written by a practitioner. It is somewhat different from a normal textbook involving machines and equipment in the field of Mechanical Engineering. Generally stress is given to the theories and principles involved and processes are explained in great detail. There is no doubt that these are essential for an engineer. But it is equally important for an engineer to know the basic design, working principle and operation of various machines/equipment used for conversion of raw materials into desired products. The introduction of laboratories, workshops and industrial tours help fill this void to some degree. Yet, engineering curriculum retains the deficiency.

Meant for undergraduate and graduate students, this book attempts to fill the void in the sub-field 'Rolling Process'. It also intends serving as a reference book for practicing engineers. It begins with comprehensive coverage of rolling processes and the mechanics of rolling, which is the theoretical content of the subject. This is followed by a chapter on 'rolling practices' that highlights plant level procedures and practices employed by the rollers for producing desired products. The book concludes with the description, operation and design principles of various equipment, mechanisms and systems used inside a rolling plant.

Siddhartha Ray is professor in the Mechanical Engineering Department and Dean (UG Programmes) at Heritage Institute of Technology, Kolkata. Earlier he taught, for a decade, at the National Institute of Technical Teachers' Training & Research, Kolkata, where he also served as the Director for about two and half years. Before joining the academia in 2001 Ray spent more than thirty years in various industries, designing and developing machines and systems for rolling mills and other kinds of material handling plants. He has published a number of technical and research papers, and he also holds two patents. Besides teaching and research, he enjoys writing popular science books and articles in Bengali.

Cambridge University Press 978-1-107-07609-9 - Principles and Applications of Metal Rolling Siddhartha Ray Frontmatter More information Cambridge University Press 978-1-107-07609-9 - Principles and Applications of Metal Rolling Siddhartha Ray Frontmatter <u>More information</u>

Principles and Applications of Metal Rolling

Siddhartha Ray

CAMBRIDGE UNIVERSITY PRESS

4843/24, 2nd Floor, Ansari Road, Daryaganj, Delhi - 110002, India

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107076099

© Siddhartha Ray 2015

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2015

Printed in India

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication Data Ray, Siddhartha. Principles and applications of metal rolling / Siddhartha Ray. pages cm Includes bibliographical references and index. Summary: "Discusses the entire gamut of rolling process and the practices followed in rolling industry and operation and use of various rolling mill equipment and systems"-- Provided by publisher. ISBN 978-1-107-07609-9 (hardback) 1. Rolling (Metal-work) I. Title. TS340.R39 2015 671.3'2--dc23 2015004528

ISBN 978-1-107-07609-9 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Cambridge University Press 978-1-107-07609-9 - Principles and Applications of Metal Rolling Siddhartha Ray Frontmatter <u>More information</u>

> This book is dedicated to the memory of my mother Sadhana Roy

She remains the main source of inspiration in my life.

Cambridge University Press 978-1-107-07609-9 - Principles and Applications of Metal Rolling Siddhartha Ray Frontmatter More information

Contents

List of	Figures		\boldsymbol{x}
List of	Tables		xviii
List of	Symbol.	s	xix
Preface	2		xxi
Acknow	wledgme	ents	xxiii
1. Int	roducti	on to Rolling Process	1
1.1	Defini	ition of Rolling Process	1
1.2	Hot as	nd Cold Rolling Processes	2
	1.2.1	Hot rolling	2
	1.2.2	Cold rolling	3
1.3	Brief I	History of Rolling	5
	1.3.1	The early history	5
	1.3.2	Modern steel rolling plants	6
	1.3.3	Modern non-ferrous rolling plants	7
	1.3.4	Modern cold rolling facilities	8
1.4	Defor	mation of Materials	9
	1.4.1	Elastic and plastic deformation	9
	1.4.2	Size effect and strain hardening	12
	1.4.3	Mechanical working and recrystallization	14
	1.4.4	Hot and cold rolling and recrystallization	15
1.5	Classi	fication of Rolling Mills and Rolling Stands	17
	1.5.1	Classification	17
	1.5.2	Rolling mill stands	20
	1.5.3	Roll arrangement in mill stands	20
2. Me	chanic	s of Rolling	30
2.1	Chara	cteristics of Rolling	30
	2.1.1	Draught and reduction	31
	2.1.2	Elongation	31
	2.1.3	Spread	32

viii (Contents
--------	----------

		2.1.4	Contact angle, angle of bite and area of contact	33
		2.1.5	Rolling friction	34
		2.1.6	Neutral point and forward slip	35
		2.1.7	Forward slip and effective working diameter in grooved rolls	36
		2.1.8	Pitch line and rolling line	38
		2.1.9	Grooved rolls and passes	39
		2.1.10	Spread in section rolling	42
		2.1.11	Elastic deformation of components vis-à-vis set roll gap	46
		2.1.12	Roll flattening	47
		2.1.13	Dark mode rolling	49
		2.1.14	Roll bending and roll camber	49
		2.1.15	Pass schedule	50
	2.2	Stresse	es in Rolling	52
		2.2.1	Distribution of stress and strain across rolled strip thickness	52
		2.2.2	Contact stresses in two-dimensional deformation	54
		2.2.3	Specific pressure in the case of slip with a constant	60
			coefficient of friction (dry friction)	
		2.2.4	Contact stress under alternative theories of contact friction	72
	2.3	Rolling	g Force	75
		2.3.1	Direction of forces in simple rolling	75
		2.3.2	Determination of roll separating force	78
		2.3.3	Formulae for calculation of mean rolling pressure	93
	2.4	Rolling	g Torque and Power	98
		2.4.1	Lever arm method	98
		2.4.2	Rolling power calculation	101
3.	Rol	ling Pr	actices	104
	3 1	Lavout	t of Stands	105
	0.11	311	Single stand	105
		3.1.2	Multi stands side by side	105
		3.1.3	Looping train	106
		3.1.4	Two-stand tandem mill	107
		3.1.5	Stepped trains of side by side stands	107
		3.1.6	Tandem continuous stands	107
		3.1.7	Semi-continuous mill lavout	109
		3.1.8	Cross-country mill layout	109
		3.1.9	Chequerboard mill layout	109
	3.2	Rolling	g Applications	110
		3.2.1	Introduction	110
		3.2.2	Rolling of steel blooms, slabs and billets	110
			, ,	

			Contents	ix
	3.2.3	Rolling of plates		122
	3.2.4	Rolling of bars and rods		126
	3.2.5	Rolling heavy sections		137
	3.2.6	Rolling of non-ferrous metals and alloys		143
	3.2.7	Cold rolling of sheet, strip and foil		146
4. Rolli	ing Ec	juipment and Systems		168
4.1	Mill S	tand Components and Mechanisms		168
4	4.1.1	Rolling mill rolls		169
4	4.1.2	Roll neck bearings		186
4	4.1.3	Roll chocks		197
4	4.1.4	Mill housings	,	201
4	4.1.5	Mechanisms for roll adjustment and roll balance	,	205
4	4.1.6	Roll change device	,	217
4	4.1.7	Sendzimir cluster mills	, ,	220
4	4.1.8	Guides and repeaters	, ,	223
4	4.1.9	Guide tables and loopers	, ,	228
4.2	Mill D	Drive	, ,	229
4	4.2.1	Mill couplings	, ,	229
4	4.2.2	Gear box and pinion stand	, ,	232
4	4.2.3	Spindles	,	237
4	4.2.4	Rolling mill electrics	,	241
4.3	Auxili	ary Equipment and Systems	,	252
4	4.3.1	Shears and saws	,	252
4	4.3.2	Straightening and leveling machines	,	259
4	4.3.3	Coilers and decoilers	,	263
4	4.3.4	Roller table		271
4	4.3.5	Miscellaneous equipment		276
4	4.3.6	Automatic gauge and shape control system		277
4	4.3.7	Roll lubrication and cooling system		283
Suggeste	d Read	dings	,	291
Index			,	292

List of Figures

1.1	Products produced by hot rolling	3
1.2	Schematic flowchart for the production of various finished and	4
	semi-finished steel products which pass through rolling process	
1.3	Variation of net interatomic force with interatomic distance	9
1.4	Scheme of plastic deformation in perfect crystal	10
1.5	Mechanics of slip in perfect crystal	11
1.6	Crystal deformation through movement of edge dislocation	12
1.7	Carpet analogy	12
1.8	Strain hardening effect	13
1.9	Effect of grain size on strength and ductility of annealed brass	14
1.10	Effects of mechanical working	15
1.11	Schematic representation of the hot-rolling process, showing	17
	the deformation and recrystallization of the grains of metal	
	being rolled	
1.12	Comparison of conventional and prestressed mill stand	28
	for 10.75" & 18"×18" mill	
1.13	4-Hi hydraulic stand with roll load cylinder	29
2.1	Simple rolling process with rectangular stock	31
2.2	Deformation of billet in rolling	32
2.3	Entry of material into the roll gap	34
2.4	Position of neutral point	35
2.5	Initial and final contact conditions-oval-round	37
2.6	Position of effective roll dia. for an oval groove	38
2.7	Underdraught and overdraught in rolling	39
2.8	Grooved roll drawing showing collars and collar holes	40
2.9	Open and closed passes	41
2.10	Causes of end thrust	41
2.11	Common types of passes	42
2.12	Equivalent rectangle method	43
2.13	The Ekelund spread nomogram	45

	List of Figures	xi
2.14	Effect of elastic deformation on final stock thickness	47
2.15	Roll flattening phenomenon	48
2.16	Dark mode rolling	49
2.17	Horizontal projection of the peripheral roll velocity	53
2.18	Above: diagram showing the velocity of a rolled strip at different points in its cross-section as it passes through the deformation zone. Below: diagram showing the velocity distribution for different cross-sectional depths	54
2.19	The variation of velocity with depth in the rolled strip shown at various points along its length, with hm:l > 2 and D cos α > hn where D = roll diameter and hn is strip thickness at neutral zone	54
2.20	Elementary forces acting on the rolled metal in the zone of backward slip	55
2.21	Determination of x and $\frac{b_x}{2}$	61
2.22	The distribution of the specific pressure along the arc of contact during slipping with dry friction $\tau = \mu p_x$	65
2.23	Theoretical distribution curves of the specific pressure along the arc of contact (with $\tau = \mu p_x$) for two-dimensional rolling with different coefficients of friction with other rolling parameters of: reduction = 30%; $\alpha = 5^{\circ}40'$ and $\frac{D}{b_l} = 86$.	68
2.24	Theoretical distribution curves of the specific pressure over the arc of contact (with $\tau = \mu p_x$) for two-dimensional rolling with different reductions ($\Delta h/h0 = 0.1, 0.2, 0.3$ and 0.5) and keeping output thickness constant ($d/h_1 = 200$), other conditions are identical, work hardening effect is neglected, and $\mu = 0.2$	69
2.25	Theoretical distribution curves of the specific pressure along the arc of contact (with $\tau = \mu p_x$) for two-dimensional rolling with rolls of different diameters:D/h ₁ = 100, 200, 350; reduction of 30% and μ =0.3	70
2.26	Theoretical distribution curves of the specific pressure along the arc of contact (with $\tau = \mu p_x$) in the case of two-dimensional rolling with different tension	71
2.27	Theoretical distribution curves of the specific pressure along the arc of contact (with $\tau = \mu p_x$) in the case of two-dimensional rolling with different arcs of contact but with the same horizontal projection of the arc of contact: Curve 1: tan $\phi_x < \mu$ along the entire arc of contact; Curve 2: tan $\phi_x > \mu$ at the beginning of the arc of contact	71

xii List of Figures

2.28	The distribution of specific pressure and specific friction forces along the arc of contact during two-dimensional rolling according to different theories: dry friction (Von Karman), constant friction force (Siehel) and viscous friction (Nadai)	73
2.29	Variation of the specific pressure and specific friction (rvadar) Variation of the specific pressure and specific friction forces along the arc of contact for two-dimensional rolling with different l: h_m ratios: (a) l: $h_m > 5$; (b) l: $h_m (2-5; (c) l:hm (0.5-2; (d) l:hm < 0.5)$	74
2.30	Resultants of the elementary forces exerted by the roll on the rolled metal	75
2.31	Direction of overall resultant forces exerted by the roll on the rolled metal in a simple rolling process	76
2.32	Direction of the resultant forces applied to the rolls in a simple rolling process	77
2.33	Forces acting on the roll	78
2.34	Types of reduction effected by rolling: (a) a rhombus from a rhombus; (b) an oval from a square; (c) a square from an oval; (d) a circle from an oval	82
2.35	The effect of the reduction during cold rolling on the yield point of steel (0.1% C), copper, and zinc	86
2.36	Variation of the ultimate strength of mild steel with strain rate at various temperatures in °C (A. Nandai and M. Manjone)	87
2.37	Variation of yield stress of mild steel with 0.15% C with the strain rate when $\log_e \frac{b_0}{b_1} = 0.3$ for various temperature	88
2.38	Variation of the coefficient, n'_{σ} , which determines the effect of external friction on contact pressure, depending on δ at various $\Delta h/h$.	91
2.39	The effect of back and front tensions on the decrease in the specific pressure during the cold rolling of steel strip at reduction of 20%, 30%, and 40%	92
2.40	Variation of the value of the coefficient C in formula 2.66 with ratio l_4/h (A. Geleji)	95
2.41	Variation with temperature of k_f of a plain carbon steels (C < 0.6%; Si < 0.5% and Mn < 0.8%), characterized by ultimate strengths of 40, 60, 80, and 100 kg/mm ² in the cold state (A.Geleji)	96
2.42	Variation of the ratio $p_m/2k$ with reduction for various ratio r / h_1 according to the formula of Sims	97
2.43	Diagram illustrating the meaning of lever arm and torque	98

CAMBRIDGE

	List of Figures	xiii
3.1	Single stand layout	105
3.2	Three stands side by side	105
3.3	(a) Alternate 2-Hi looping train	106
3.3	(b) 2-Hi offset stands looping train	106
3.4	Two stand tandem mill	107
3.5	Stepped open train	107
3.6	Continuous stands with (a) group drive and (b) individual drive	108
3.7	Semi-continuous mill layout	108
3.8	Cross-country mill layout	109
3.9	Chequerboard mill layout	110
3.10	Layout of a 730/530 mm 12 stands continuous billet mill	111
3.11	Prevention of laps due to overfilling in bloom rolling	112
3.12	2-Hi blooming rolls and pass sequence- using a bullhead	114
3.13	Blooming rolls and pass sequence- using grooved passes	115
3.14	Roll of a slabbing mill	116
3.15	Billet mills of different types	118
3.16	Diamond-square pass sequence for a billet mill	121
3.17	Layout of a plate mill	125
3.18	Schematic layout of rolling equipment and shears in a 350 mm	126
	diameter continuous section mill	
3.19	Layout of a bar and wire rod mill	128
3.20	Layout of a bar and wire-rod mill	129
3.21	Single plug method of cutting finishing pass for rounds	130
3.22	Determination of leading ovals	132
3.23	Comparison of square–oval and slug–oval method	134
3.24	Square-oval and oval square reduction- normal and gothic square	135
3.25	A typical oval–slug sequence of rolling rounds	136
3.26	Rolling of rounds by the oval–round method: 3/4 in. rounds	137
	from 4 in. billets in 12 passes	
3.27	Layout of rolling stands and equipment in a rail and structural mill	138
3.28	Types of passes for rolling rails	138
3.29	Two types of rail rolling sequence (passes numbered in the order of rolling)	139
3.30	Basic type of passes for joist rolling	140
3.31	Pass sequences for beam rolling	141
3.32	Types of passes for rolling channels	142
3.33	Elevation of a three stand tandem cold strip mill	147
3.34	Stress curve- aluminum (pure and common alloys)	165
3.35	Stress curve- aluminum (strong alloys)	165
3.36	Roll pressure function – f3	166

xiv List of Figures

3.37 3.38	Torque function – f5 Values of R1/R for reduction stress P/ Δ h as per Hitchcock's formula	166 167
4.1	Plain roll	169
4.2	Grooved roll	170
4.3	Evenly distributed load centrally placed in the rolls	180
4.4	Determination of stress magnification factors	181
4.5	Dependence of the coefficient of friction of textolite bearings,	188
	with water lubrication, on sliding speed at various specific	
4.6	Arrangement of linings in open bearing in two-high and three-	188
 0	high mills	100
4.7	Fabric bearing	189
4.8	Radial thrust oil–film bearing for back-up roll of 2500 mm wide continuous cold rolling mill	189
4.9	Diagram of boring of sleeve-lining of bearing	190
4.10	Double row spherical roller bearing arrangement on the roll neck of a medium section mill	192
4.11	Back-up roll neck of a four-high hot mill fitted with four	193
	row cylindrical roller bearing and double acting taper roller	
	thrust bearing.	
4.12	Cut sectional view of a four-row taper roller tapered bore bearing	194
	assembly fitted on a back-up roll neck of a 4-Hi mill	
4.13	Hydraulic mounting of a bearing using a hydraulic nut	195
4.14	Arrangement of work roll and backup roll chocks within window gap	198
4.15	Dimensions of a 2-Hi work roll chock	199
4.16	Dimensions of a 2-Hi back-up roll chock	200
4.17	Approximate minimum work roll chock sections of a four	200
	high mill. These values are subject to change by the mill	
4.10	equipment designer to suit specific mill	201
4.18	Stand housings	201
4.19	Housing under tension	202
4.20	Various cross-sections of housing posts	203
4.21	General view of the housing assembly of a 1000 mm blooming	204
4 22	Concerning of the housing occurs have of 500 and 1200 × 2500 mm	205
4.22	General view of the housing assembly of 500 and 1200 × 2500 mm	205
	housing 111 T	
4 23	Schemes of manual ton roll adjusting mechanisms	207
4.2.4	Stand of 1000 mm blooming mill (lateral cross-section)	209
	0 ()	

	List of Figure	es xv
4.25	Kinematic diagram of drive for screw-downs in 1000 mm blooming mill	210
4.26	Stand of a 1100 mm blooming mill with hydraulic top roll balancing	211
4.27	Diagram of top roll adjusting mechanism with spring counterbalance arrangement in a three-high plate mill	211
4.28	Diagram of screw-down drive in a four-high 500and1250×1700 reversing cold rolling mill. Gear ratio from motor to screw-down is 1080	212
4.29	Diagram of hydraulic roll balancing in four-high 610 and 1240×1680 stand	213
4.30	Safety devices: (a) safety sleeve, (b) wedge.	214
4.31	Axial adjustment of rolls rarely moved	215
4.32	Axial adjustment of rolls moved frequently	215
4.33	Axial fixing of plain roll mounted in roller or oil–film bearings by triangular fixing strips	216
4.34	Diagram of axial fixing of rolls in four-high mill by hinged pawl	216
4.35	Diagram of roll change with crane	218
4.36	Diagram of rack and pinion mechanism for changing roll with roll box	219
4.37	Diagram of sliding trolley mechanism for changing back-up rolls in a four-high mill	220
4.38	Roll arrangement of type 1-2-3-4 Sendzimir mill	221
4.39	Pressure saddles supporting backing bearing assembly in Sendizimir mill	222
4.40	Lateral adjustment of 1st intermediate rolls	223
4.41	Guides	224
4.42	Outside fastening of cramp bar by bolts	224
4.43	Fastening of side guide on cramp bar	225
4.44	Non-twist entry guide consisting of a box and side guides	225
4.45	Roller entry guide for ovals	226
4.46	Roller twist guide fixed at mill exit	227
4.47	Repeater with open looping trough	227
4.48	Scheme of a looper in skelp mill	229
4.49	Geared coupling	230
4.50	Improved shape of teeth in a geared coupling with barreling (elliptical cross-section)	230
4.51	Flexible coupling with spiral springs (Bibby) showing deformation of springs under loads	231
4.52	Diagram of 1, 2 and 3 stage reduction gear	232
4.53	Diagram of group reduction gears	233

xvi List of Figures

4.54	Dimensioned drawing of a reduction gear box with gear ratio $i = 6.35$, maximum torque on slow-speed shaft 8.73 tm	235
4.55	Arrangement of pinions of different pinion stands	236
4.56	Sectional elevation view of a 2-Hi pinion stand	237
4.57	Diagram of arrangement of universal spindles	238
4.58	Wobbler coupling	238
4.59	Wobbler connection of breakdown 500 mm three-high section mill	239
4.60	Palm joint of universal spindle	240
4.61	Mill spindle with two half gear couplings at two ends	240
4.62	Spring balancing of spindles with arrangement of springs on one side	241
4.63	DC motor connection with series field required for high starting torque	242
4.64	DC motor connection with shunt field required for normal starting torque but speed increase with field weakening beyond base speed	243
4.65	DC motor connection with compound field. Best for high starting torque but good speed control	243
4.66	AC slip ring motor with rotor resistance control, suitable for controlled starting torque and current	244
4.67	3-phase synchronous motor with separate excitation	244
4.68	Three functions of a tyristor converter	245
4.69	AC VVVF drive	245
4.70	Torque control scheme	246
4.71	Large synchronous motors with variable frequency converter used for tandem hot strip mills	248
4.72	Typical electrical scheme for 6-stand tandem hot strip mill	248
4.73	(a) Mill DC motor control with thyristor converter. Both	250
	armature and field by DC voltage control with six pulse controller. A two quadrant operation	
4.73	(b) Thyristor Converter with 12-pulse controller	250
4.74	Drive and control for a 4-High reversing cold rolling strip mill	251
4.75	Arrangement of shear blades	253
4.76	Motor operated shear with 1000 t shearing force for shearing blooms	254
4.77	Dimensioned drawing of a Multi-knife rotary shear with side scrap cutter for cold shearing of maximum 6 mm strips /	256
	sheets up to 1500 mm wide	
4.78	Drum shear with feed rollers 1 and shear 2	257
4.79	Diagram of the movement of knives in two-drum flying shears operating from stationary position	257

CAMBRIDGE

	List of Figures	xvii
4.80	Sliding frame circular saw	258
4.81	The most common type of saw tooth for hot cutting of steel	259
4.82	500 T straightening press	260
4.83	Arrangement of rolls in a straightening machine	260
4.84	Chequerboard arrangement of backup rolls in relation to bending roll	261
4.85	8-roll heavy section straightening machine side view	261
4.86	8-roll heavy section straightening machine front view	262
4.87	Diagram of rotation straightening machines with rolls set	263
	obliquely (driven rolls have rotary arrow; rolls taking part in	
	the straightening process have vertical force arrows.)	
4.88	Arrangement of tension coiling drums in a reversing cold rolling mill	264
4.89	(a) General view of coiler with overhung expanding mandrel	265
4.89	(b) Sectional view of an expanding /collapsing mandrel of a coiler	266
4.90	Roll type coiler with three wrapping rolls (upcoiler).	267
4.91	Diagram of multi-roll down coiler	268
4.92	Roll and drum machine for coiling strip up to 1550 mm wide	268
4.93	Diagram of laying rod reel, Edenborn type	269
4.94	General view of pay-off with overhung drum and slipping brake	270
4.95	Operation of double cone decoiler	271
4.96	Typical group driven receiving table of 1150 blooming mill	273
4.97	A typical dimensioned drawing of a Roller with separate drive	273
	by flanged motor through gear coupling	
4.98	Diagram of light tilting table with balancing arrangements	274
	by weight	
4.99	Diagram of roller drives for tilting tables	275
4.100	Diagram of primary mill manipulator with drive located on side	276
4.101	Diagram of a bobbin-type manipulator	276
4.102	4-Hi stand with roll load cylinder and hydraulic roll balancing	278
	arrangement	
4.103	HAG control scheme	279
4.104	Tension measuring sensor roll	282
4.105	Schematic diagram of a re-circulating type roll coolant system	288

List of Tables

1.1	Lowest recrystallization temperature of common metals	16
1.2	Classification of rolling mills by function	18
1.3	Roll arrangement and use of stands with horizontal rolls	20
1.4	Diagram of stands with vertical rolls and universal stands	25
1.5	Mill stands with inclined rolls	27
2.1	The coefficient of friction during hot rolling of non-ferrous metals at the instant of gripping	89
2.2	Coefficient of friction under cold rolling of different materials under different conditions	90
2.3	Average values of λ for all results determined by Ford	99
2.4	Average values of λ' for all results determined by Ford	100
2.5	Values of the coefficient of friction for various types of roll-neck bearings	102
3.1	Typical slabbing mill pass schedule	117
3.2	Specifications of Sendzimir 20-Hi cold rolling mills	148
3.3	Recommended maximum pass reduction and maximum cumulative reduction in cold rolling of different metals and alloys	152
4.1	Maximum permitted angles of bite and $\Delta h/D$	171
4.2	Roll neck dimensions	173
4.3	Hardness figures, tensile strengths and approx. shear strength for steel rolls	178
4.4	Basic properties of textolite, lignofol, lignoston and bronze	187
4.5	Clearance between chock and window	199

List of Symbols

x,y,z	three rectangular coordinates
F	force
F _R	repulsive force
FA	attractive force
r	inter-atomic distance
τ	ultimate shear stress
Ğ	modulus of rigidity
Hi	abbreviation of "High", signifying number of rolls in a mill stand
h	thickness of stock/workpiece
h ₁	input thickness
h_{2}, h_{0}	output thickness after deformation through rolling
h	thickness at neutral axis
w,b	width of stock/workpiece
w ₁ ,b ₁	Input width
w_2, b_2	output width after deformation
w _m ,b _m	mean width
A ₁	cross sectional area of stock/material at input
A_2	cross sectional area of output after deformation
L ₁	length of stock/workpiece at input
L ₂	length of stock at output after deformation
α	contact angle or angle of bite/contact
$\Delta h_1(h_1-h_2), \delta$	draught or reduction in height/thickness
E'	elongation factor
$\Delta w, \Delta b_m, (b_2 - b_1)$	spread
R,r	roll radius
D	roll diameter
1	projected length of arc of contact
μ	coefficient of friction
Ν	neutral point
α_{n}, γ	neutral point angle
v ₁	stock velocity at entry
v ₂	stock velocity at output
-	

xx List of Symbols

h _o	set roll gap
γ៓	poisson ratio
E	Young's modulus
Δf	mill stretch
R′,r′	Deformed roll radius
h _m	mean thickness of stock/workpiece
v _n , v _r	roll surface velocity
V _v	roll surface velocity in the direction 'x'
۰ ¢	angle subtended by a point on roll surface within roll bite
φ _v	Angle subtended by a point on roll surface at a distance x from
· A	roll axis.
$\sigma_{v}, \sigma_{v}, \sigma_{a}$	normal stresses
k,τ	shear yield stress
τ	contact shear stress
$\hat{\sigma_1}, \sigma_2, \sigma_3$	principal normal stresses
$\tau_{vv} \tau_{va}^2 \tau_{av}$	Shear stresses
τ_1 τ_2 τ_3	principal shear stresses
σ	yield stress
σ	actual resistance to deformation (tensile yield stress)
σ_{t}^{a}	ultimate strength
σ	tensile stress due to back tension
$\sigma_{\rm R}$	tensile stress due to front tension
ຖ້	coefficient of viscosity
F	horizontal projection of contact area
σ	tensile yield stress of annealed metal
Ť	absolute temperature
S	specific heat of metal
t	rolling temperature, ⁰ c
Δt	time interval, seconds
А	energy required to deform metal
W	weight of metal in kg
u, E	strain rate, sec ⁻¹
3	Strain
р	contact pressure between roll and stock,
a	Length of lever arm
λ	lever arm coefficient
Т	Torque
kw	Kilo-watt
HP	horse power
HAGC	Hydraulic automatic gauge control
EDC	Edge drop control

Preface

Organization of this book is somewhat different from a normal textbook involving machines and equipment, in the field of mechanical engineering. Generally, stress is given to the theories and principles involved and the processes are explained to a great detail. There is no doubt that these are essential for an engineer. But it is equally important for an engineer to know the basic design, working principles and operations of the various machines and equipment which are used in the practical field for conversion of the raw materials into desired products. Baring the subject of 'Machine Tools', in most other fields of manufacturing processes, available textbooks seem to be rather miserly in thorough discussions on the description, design, working principles of various machines and systems involved and practices followed in actual operation.

An attempt has been made to bridge this gap by introducing laboratory exercises and workshops along with industry visits, in the engineering curricula. More often than not these prove to be inadequate. It is next to impossible that an equipment or machine like a turbine, an extrusion press or a rolling mill can be installed in an academic institution. By observing the operation of a machine or system during a visit to an industrial plant, definitely a lot can be learned about the manufacturing process, but seldom can it give an idea about the working principles of the various mechanisms, their design details or about the intricacies of operational practices.

While teaching 'Manufacturing Technology' to MTech students at the National Institute of Technical Teachers' Training and Research (NITTTR), Kolkata, I observed this shortcoming in my students and cherished the desire to bridge the gap as soon as possible. With 30 years' experience in the industry in design, development and commissioning to operation plant and machinery (out of which more than half the period was in the field of Rolling Mills), I decided to write this book titled *Principles and Applications of Metal Rolling*.

This book is intended to cover undergraduate and postgraduate engineering curricula for 'Rolling Technology' in India and in other countries. It is also meant to be a reference book for practicing engineers working in the field of rolling mills. The first two chapters cover the rolling process and mechanics of rolling

xxii Preface

comprehensively, which is the theoretical content of the process of rolling. The third chapter on 'Rolling Practices' highlights plant level procedures and practices employed by the rollers for producing desired products. The whole of the fourth chapter on 'Rolling Equipment and Systems' is devoted to the description, operation and design principles of various equipment, mechanisms and systems used in a rolling plant.

In preparing the book, help has been taken from some specialized books written and edited by experts and from the literature of equipment manufacturers. Acknowledgement and references to such books and literature have been made at appropriate places.

Suggestions and comments on the organization and contents of the book are welcome and may kindly be sent to the publisher or the author.

Acknowledgments

While writing this book I have received help, suggestions and encouragement from many of my ex-colleagues, friends and well wishers, which I gratefully acknowledge.

At the very outset I would like to express my appreciation to my MTech students of Manufacturing Technology course offered by the National Institute of Technical Teachers' Training and Research (NITTTR), Kolkata. While teaching and discussing the subject of Rolling Technology with them, I got impetus to write the present book. I am indeed thankful to them.

During the writing of this book I have drawn upon the knowledge and experience I received while working with M/s Davy Ashmore India Ltd., in close contact with their collaborators in the UK – Davy Lowey Ltd. and Loewy Robertson Engineering Company of the UK, and later with M/s Tata Construction and Projects Limited. I would like to acknowledge my deep sense of gratitude to the following persons, who gave me the opportunity to work in the field of design and operation of Rolling Mills and also gave me all possible help and cooperation during the writing of this book: Late P. Sen, Ex.-M. D. of Davy Ashmore India Ltd. and my ex-colleagues P. K. Bera and A. K. Mitra. I am particularly indebted to S. Bhattacharya from the same organization, who advised me while writing the topic on Mill Electrics.

I am also grateful to friends from the Davy Group of companies in the UK, namely: T. Shiemeld, T. Smith, A. F. Uff, D. Fretwell and others who helped me with information and material on the subject as and when I needed them. I am thankful to S. Majumdar, Ex President of Hindalco and colleagues at NITTTR, Kolkata and Heritage Institute of Technology, Kolkata for advising and encouraging me during the preparation of the book.

My thanks are also due to T. K. Dutta, an ex-colleague of Davy Ashmore, who joined later M/s. SMS Demag, India, for giving me valuable suggestions on Roll Lubrication and Cooling System.

I am thankful to Kingshuk Ghosh, the DTP operator of my department at NITTTR, who untiringly finished the entire manuscript, working beyond his working hours. My thanks go to G. Patra for preparing some of the diagrams using CAD.

xxiv Acknowledgments

I am grateful to my wife Dipali Ray and other family members for their constant encouragement and sacrifices during the preparation of the book.

Finally, my thanks are to the Cambridge University Press for readily accepting to publish the book.