Index

A+ innovations, 178–179
Advanced Construction Technology Center (ACTEC), 3–4, 25
aeration system inspection robot, 272–273
aerial robots, 18–23
 aerial construction with quadropter teams, 126–128
 for building structure assembly, 123–128
 in flight assembled architecture, 124
Aerial Vision Group, 19
AGV-based integrated on-site logistics system, 113
AIST, 198
Anex Industrial Hong Kong Limited, 233
Ansan Korea, 208–209, 261
Architectural Institute of Japan (AIJ), 3–4, 292
Asada, H. Henry, 210–212
asbestos material removal robot, 287–290
 asbestos removal, collecting and packaging robot, 283–286
Ascending Technologies, 19
ASIMO bipedal robot, 209–210
assistive devices. See exoskeletons, wearable robots and assistive devices
Atkociunas, S., 95
Auto-Clamp crane-end effector, 145
Auto-Claw crane-end effector, 144
automated building construction system (ABCS), 6
 automated coating robot for external walls, 196
 automated concrete distribution system, 82–83
 automated construction lift, 109–110
 automated crane for rebar positioning, 43–44
 automated guided vehicle (AGV) for construction sites, 114–115
 integrated on-site logistics system, 113
 automated mini logistics unit, 123
 automated on-site delivery system, 115–117
 automated on-site logistics system, 117–118
 automated paving machine, 180–184
 automated site-measuring and construction progress monitoring, 14–23
automated vertical material delivery lift, 110–111
automated/robotic on-site 3D concrete structure production, 46–57
automatic climbing formwork SKE plus, 48–49
cable-suspended robotic contour crafting system, 54–55
gantry type contour crafting robot, 50–53
minibuilders, 57
Platform System ACS P. 50
 robots equipped with end-effectors for additive manufacturing for extraterrestrial construction, 55–57
automated/robotic on-site factories, 1, 2, 3, 5
automated/robotic on-site truss/steel structure assembly, 58–62
location orientation manipulator, 61–62
 robotic assembly of truss structures, 62
automatic climbing formwork SKE plus, 48–49
automatic compacting leveling system MA1®2Flooor Master, 89
automatic digging and soil removing system, 27
automatic excavation system for diaphragm-wall production, 26
automatic floor screeding robot, 92–93
automatic modular assembly system (AMAS), 131–133
automated on-site soil removing/logistics system, 29–30
automatic rendering machine, 233
AutoMine product family, 38
autonomous construction equipment, 34–35
Autonomous Haulage System, 34
Autonomous Solutions, Inc., 35–36
Auto-Shackle, 141
AUWEL 3 small sized column welding robot, 154
Ball State University, 70–71
Baxter/Sawyer humanoid construction robot, 201–202
Behdinan, Kamran, 72–73
Bespoke Access Solution, 266–267
Big Canopy, robotic end effector for, 146
bio-inspired facade inspection robot “C-Bot”, 252–253
Blium, Jeremy, 137–139
“Boardman” mobile material handling robot, 231
Bock, Thomas, 175
Bodyweight Support Assist Device, 209–210
Bouygues Construction, 179–180
Brazauskas, T., 95
bricklaying robots, 62–77
bricklaying robot concept, 72–73
BRONCO, 67–68
Hadrian, 73–75
OSCR, 70–71
ROCCO, 68
Semi-Automated Masonry System (SAM), 75–77
Solid Material Assembly System (SMAS), 65
BRONCO (onsite bricklaying robot), 67–68
Brooks, Rodney, 201–202
Brunkeberg Systems AB, 169–175
Building Contractors Society, 3–4
Building Research Institute of the Japanese Construction Ministry (BRI), 3–4
built-in-rail guided building facade maintenance robot, 261
cable-suspended robotic contour crafting system, 54–55
CAFE semi-automated cost effective cleaning system, 254–255
CALM concrete floor leveling robot, 91–92
“Canadian Crab” rail guided facade cleaning robot, 255–256
carbon fibre layer application robot, 282–283
Carnegie Mellon University, 129–130, 199–201
categories, STCRs, 14–23
bricklaying robots, 62–77
concrete finishing robots, 94–108
concrete levelling and compaction robots, 86–94
crane-end effectors, 139–146
carbon fibre layer application robot, 282–283
carbon fibre layer application robot, 282–283
carbon fibre surface removing robot I, 277
carbon fibre surface removing robot II, 277
carbon fibre wall compaction system, 87
Construction Robot System Catalogue, 7
Construction Robotics, 75–77
Construction Site Robotics Lab (CSRL), 70–71
counter crafting system, 54–55
crane-end effectors, 139–146
crane-end effectors, 139–146
for Big Canopy, 146
Mighty-Shackle, 141
for Big Canopy, 146
Mighty-Shackle, 141
for Big Canopy, 146
Mighty-Sheakle, 141
Mighty-Shackle, 141
Mighty-Shackle, 141
crane-end effectors, 139–146
crane-end effectors, 139–146
for Big Canopy, 146
Mighty-Shackle, 141
Mighty-Shackle, 141
Mighty-Shackle, 141
CYBERDYNE Inc., 204–205
swarm robotics and self-assembling building structures, 128–139
tile setting and floor finishing robots, 175
C-Bot bio-inspired facade inspection robot, 252–253
celling and wall panel installation
light-weight manipulator for, 222
robot for, 223
celling glass installation robot, 168
celling handling robots, 216
celling panel positioning robot “CFR-1”, 223–224
Centre hauler, 32
“CFR-1” ceiling panel positioning robot, 223–224
Chang Soo Han, 208–209, 261
chimney cleaning and dismantling robot, 278
CHIMP – CMU Highly Mobile Platform, 199–201
Cóncas Sem Fronteiras, 72–73
Clearpath Robotics, 18
climbing robots, 293–294
COMB system, 35
Computer Aided Management Systems, 296
Computer Aided Engineering Systems, 296
concrete finishing robots, 94–108
mobile concrete exterior floor finishing robot, 106
mobile concrete floor finishing robot, 99–100
Flatt-KN, 101–102
Surf Robo mobile, 102–104
mobile concrete floor levelling and screeding robot, 106
mobile floor finishing robot, 104–105, 108
mobile floor troweling robot Roboco, 96
mobile robotic concrete floor troweling system, 95
cement floor compaction systems, 86–87
cement floor levelling robot, 91–92
cement levelling and compaction robots, 86–94
automatic floor screeding robot, 92–93
cement floor compaction system, 86–87
cement floor levelling robot, 91–92
cement wall compaction system, 87
cement wall compaction system, 87
screeding robot LOM 110, 93–94
screeding robot, 92–93
concrete surface removing robot I, 277
concrete surface removing robot II, 277
concrete wall compaction system, 87
Construction Robot System Catalogue, 7
Construction Robotics, 75–77
Construction Site Robotics Lab (CSRL), 70–71
cooperative robots, 214
counter crafting system, 54–55
crane-end effectors, 139–146
Auto-Clamp, 145
Auto-Claw, 144
Auto-Shackle, 141
for Big Canopy, 146
Mighty-Shackle, 143–144
Mighty-Jack, 139–140
NIST Robocrane, 142–143
CYBERDYNE Inc., 204–205
Index

Dae Hie Hong, 261
Daewoo Shipbuilding and Marine Engineering (DSME), 203–204
Daiho Construction, 25
D’Andrea, Raffaello, ix, 124
d’Arabeloff Lab, 210–212
DARPA Robotics Challenge (DRC), 199–201
DB Robot concrete distributor, 80
Demsetz, Laura, 234–235
desk and chair arrangement robot, 270–271
Doggett, William, 62
Doka, 48–49
Dong Hwan Lim, 208–209
DXR 310 demolition robot, 275–276
earth and foundation work robots, 23–31
automatic digging and soil removing system, 27
automatic excavation system for diaphragm-wall production, 26
automatic on-site soil removing/logistics system, 29–30
EM 320S robot for digging vertical shafts, 30–31
overhead rail guided digging robots, 25, 29
Ehime University, 26
Eindhoven University of Technology, 178–179
EM 320S robot for digging vertical shafts, 30–31
end-effectors, 55–57
Enterprise Resource Management Systems, 295
Enterprise Resource Planning (ERP), 296
ERO concrete recycling robot, 286–287
ETH Zurich, 124
exoskeletons, wearable robots and assistive devices, 202–214
affordable and modular cooperative robots, 214
exoskeleton for handling heavy steel elements, 203–204
FORTIS exoskeleton, 206–208
Hybrid Assistive Limb (HAL), 204–205
Lower Extremity Exoskeleton Robot for Concrete Placing (HEXAR-PL), 208–209
smart glasses, 212–214
Supernumerary Robotic Limbs (SRLs), 210–212
Walking Assist device with Bodyweight Support System, 209–210
EZ Renda Construction Machinery Limited, 233
facade concrete panel installation robot, 161
facade delamination robot “Jet Scrapper”, 279
facade diagnostics, cleaning and painting robot, 192
facade inspection robot, 244–245, 246–247, 248–250
facade installation robots, 155–175
automatic facade panel installation using movable fixture, 161–163
Brunkeberg™ System, 169–175
celling glass installation robot, 168
facade concrete panel installation robot, 161
facade element installation robots, 157–158, 164
for facade panel installation in building renovation, 175
on-site material handling systems, 166–167
for positioning of facade elements from upper level on lower levels, 158–161
for post and beam structures, 157
roof cover installation robot, 165–166
“Shuttle System” for facade element installation, 168–169
facade maintenance robot, 247
facade painting robot system, 190–192, 193–194
Fastbrick Robotics, 73–75
FH Johanneum Industrial Design, 35
fire fighting robot, 268–269
fireproof coating robots, 237–243
fireproof coating and rock-wool spraying beam-attached/rail guided robot, 242–243
fireproof coating and rock-wool spraying mobile robot, 240–241
SSR robot series, 238–240
TN-Fukkun, 241
Flat K-N mobile concrete floor finishing robot, 101–102
flight assembled architecture, 124
FORTIS exoskeleton, 206–208
FRAC Orléans, 124
Fraunhofer IFF, 250–252, 257–260
Future Cities Laboratory (FCL), 179–180
GaiaX excavator, 32
Galler, Niklas, 252–253
Gambao, E., 254–255
gantry type contour crafting robot, 50–53
“Garapagos” on-site material recycling robot, 276
Georgia Institute of Technology, 15
GGT Group, 166–167
Google, 212–214
Gorv, Stanislav, 252–253
Goyo, 3–4
Gramazio & Kohler, 124
GRASP Lab, 126–128
Gryphin extreme wheel loader, 32
Index

Hadrian bricklaying robot, 73–75
Hanyang University, 13, 168, 208–209, 261
Harvard University, 133–135
Hasegawa, Yukio, 2, 297
Hazam, 3–4
Hazama Ando Corporation, 96–99, 176–177, 216
heavy bar, positioning of, 40
heavy reinforcement bars, positioning of, 45
heavy-component installation, mobile robots for, 228–229
Hec Don Lee, 208–209
Hilhorst Tegelwerken, 178–179
Hitachi, 3–4
Honda Motor Co., 198, 209–210
horizontal concrete distribution robot, 81–82
HRP robot series, 198
humanoid construction robots, 196–202
Baxter/Sawyer, 201–202
CHIMP – CMU Highly Mobile Platform, 199–201
HRP robot series, 198
Husqvarna AB, 275–276
Hybrid Assistive Limb (HAL), 204–205
inspection robots. See service, maintenance, and inspection robots
Institute for Advanced Architecture of Catalonia (IAAC), 57
Institute of Control Technology for Machine Tools and Manufacturing Systems, 67–68
integrated on-site manufacturing, 291–301
climbing robots and, 293–294
factory approach, 299–301
on-site logistics, 292–293
robot oriented design (ROD), 297
simulation and real-time monitoring, 295–297
single-task construction robots and, 291–292, 297–299
site-cover technology, 295
interior finishing robots, 215–236
automatic rendering machine, 233
for ceiling and wall panel installation, 223
celing handling robots, 216
interior panel-handling root, 226–227
light-weight manipulator for ceiling and wall panel installation, 222
mini crane robot, “Kalcatta”, LM15-1, 218
mobile and modular interior finishing robot kit, 229–230
mobile drilling robot, 235–236
mobile material handling robot “Boardman”, 231
mobile plasterboard handling robot, 216–218
mobile robot for installation of heavy components, 228–229
multi-purpose construction robots (LH series), 218–222
plumbing part positioning robot, 226
Trackbot and Studbot robots for installation of partition-wall framing, 234–235
wallpapering robot, 227
interior panel-handling root, 226–227
International Association for Automation and Robotics in Construction, 7
Irmã3D (Intelligent Robot for Mapping Applications in 3D), 14, 15–17
Iturralde, Kepa, 175
Jacobs University Bremen gGmbH, 17
Jae Myung Huh, 261
Japan Industrial Robot Association (JARA), 2
Japan Robot Association (JARA), 3–4
Japan Society of Civil Engineers (JSCE), 3–4
Japanese Research Institute, 65
Japanese Robot Association, 7
“Jet Scraper” facade delamination robot, 279
“KABEDOHA” facade element inspection robot, 250
“Kalcatta”, LM15-1, mini crane robot, 218
Karlsruhe University, 68
Kawada Corporation, 154, 198
Kawasaki Heavy Industries, Ltd., Robot Division, 3–4, 151–152, 155
Khoshnevis, Behrokh, 50–53, 55–57
kinematic structures, 10–13
Konoike Construction Co. Ltd., 26, 82–83
Korea University, 137–139
Kranendonk Production Systems, 178–179
Kumagai Gumi Corporation, 165–166, 186–187
Kumar, V., 126–128
Kwangwoon University, 141
LH series multi-purpose construction robots, 218–222
Li, Shuguang, 137–139
Lindsey, Q., 126–128
Linner, Thomas, 175
Lipson, Hod, 135–139
Lissmac, 68
location orientation manipulator, 61–62
Lockheed Martin, 206–208
LOM 110 screeding robot, 93–94
Lomar SRL, 93–94
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Extremity Exoskeleton Robot for Concrete Placing (HEXAR-PL), 208–209</td>
</tr>
<tr>
<td>Maeda, 3–4, 13</td>
</tr>
<tr>
<td>Maeda Corporation, 117–118</td>
</tr>
<tr>
<td>MAI® International GmbH, 89</td>
</tr>
<tr>
<td>maintenance robots. See service, maintenance, and inspection robots</td>
</tr>
<tr>
<td>Malcius, M., 95</td>
</tr>
<tr>
<td>Measurement in Motion, 17</td>
</tr>
<tr>
<td>Mellinger, D., 126–128</td>
</tr>
<tr>
<td>METI, 198</td>
</tr>
<tr>
<td>Microsoft HoloLens, 212–214</td>
</tr>
<tr>
<td>Mighty Shackel Ace crane-end effector, 143–144</td>
</tr>
<tr>
<td>Mighty-Jack robotic crane-end effector, 139–140</td>
</tr>
<tr>
<td>Min Sung Kang, 261</td>
</tr>
<tr>
<td>mini crane robot, “Kalcatta”, LM15-1, 218</td>
</tr>
<tr>
<td>minibuilders, 57</td>
</tr>
<tr>
<td>Ministry of Construction (MOC), 3–4</td>
</tr>
<tr>
<td>Ministry of Industry and Trade (MITI), 3–4</td>
</tr>
<tr>
<td>Missouri University of Science and Technology, 18</td>
</tr>
<tr>
<td>Mitsubishi, 3–4, 78–79</td>
</tr>
<tr>
<td>Mitsui, 29</td>
</tr>
<tr>
<td>mobile robots, 14–18</td>
</tr>
<tr>
<td>concrete distribution robot, 83</td>
</tr>
<tr>
<td>concrete exterior floor finishing robot, 106</td>
</tr>
<tr>
<td>concrete floor finishing robots, 99–100</td>
</tr>
<tr>
<td>Flat-KN, 101–102</td>
</tr>
<tr>
<td>Surf Robo, 102–104</td>
</tr>
<tr>
<td>concrete floor levelling and screeding robot, 106</td>
</tr>
<tr>
<td>drilling robot, 235–236</td>
</tr>
<tr>
<td>floor finishing robot, 96, 104–105, 108</td>
</tr>
<tr>
<td>floor travelling robot, 96–99</td>
</tr>
<tr>
<td>for installation of heavy components, 228–229</td>
</tr>
<tr>
<td>material handling robot “Boardman”, 231</td>
</tr>
<tr>
<td>modular interior finishing robot kit, 229–230</td>
</tr>
<tr>
<td>plasterboard handling robot, 216–218</td>
</tr>
<tr>
<td>tiling machine, 179–180</td>
</tr>
<tr>
<td>modular maintenance and rescue robot system, 267</td>
</tr>
<tr>
<td>modular multi robotic on-site delivery and working platform system, 122</td>
</tr>
<tr>
<td>Molecubes, 135–137</td>
</tr>
<tr>
<td>MSTC, 198</td>
</tr>
<tr>
<td>multi-purpose construction robots (LH series), 218–222</td>
</tr>
<tr>
<td>multi-purpose travelling vehicle (MTV), 271</td>
</tr>
<tr>
<td>Muncys, M., 95</td>
</tr>
<tr>
<td>Murata, S., 131–133</td>
</tr>
<tr>
<td>Myeong Su Gil, 208–209</td>
</tr>
<tr>
<td>NASA Innovative Advanced Concept (NIAC) project, 55–57</td>
</tr>
<tr>
<td>NASA Langley Research Center, 62</td>
</tr>
<tr>
<td>National Institute of Standards and Technology (NIST), 142–143</td>
</tr>
<tr>
<td>National Robotics Engineering Center (NREC), 199–201</td>
</tr>
<tr>
<td>NEDO, 198</td>
</tr>
<tr>
<td>New Energy and Industrial Technology Development Organization (NEDO), 287–290</td>
</tr>
<tr>
<td>Nigl, Franz, 137–139</td>
</tr>
<tr>
<td>Nihon Bisoh Co. Ltd., 13, 263–266</td>
</tr>
<tr>
<td>NIST Robocrane, 142–143</td>
</tr>
<tr>
<td>nLink AS, 235–236</td>
</tr>
<tr>
<td>nr21 DESIGN GmbH, 252–253</td>
</tr>
<tr>
<td>Ohio University, 54–55</td>
</tr>
<tr>
<td>Ohmoto Gumi, 25</td>
</tr>
<tr>
<td>Ömer Hacıyömeroğlu, 286–287</td>
</tr>
<tr>
<td>On-site Construction Robots (OSCR), 70–71</td>
</tr>
<tr>
<td>on-site logistics, 292–293</td>
</tr>
<tr>
<td>on-site manufacturing (ONM), 291–301</td>
</tr>
<tr>
<td>climbing robots and, 293–294</td>
</tr>
<tr>
<td>factory approach, 299–301</td>
</tr>
<tr>
<td>on-site logistics, 292–293</td>
</tr>
<tr>
<td>robot oriented design, 297</td>
</tr>
<tr>
<td>simulation and real-time monitoring, 295–297</td>
</tr>
<tr>
<td>single-task construction robots and, 291–292, 297–299</td>
</tr>
<tr>
<td>site-cover technology, 295</td>
</tr>
<tr>
<td>on-site material handling systems, 166–167</td>
</tr>
<tr>
<td>on-site material robot “Garapagos”, 276</td>
</tr>
<tr>
<td>on-site overhead logistics system, 121</td>
</tr>
<tr>
<td>OSR-1 automatic balustrade and facade painting system, 194–195</td>
</tr>
<tr>
<td>overhead rail guided digging robots, 25, 29</td>
</tr>
<tr>
<td>Palo Alto Research Center (PARC), 130</td>
</tr>
<tr>
<td>Peri, 50</td>
</tr>
<tr>
<td>Phoenix Aerial systems, 19</td>
</tr>
<tr>
<td>plasterboard handling robot, mobile, 216–218</td>
</tr>
<tr>
<td>Platform System ACS P, 50</td>
</tr>
<tr>
<td>plumbing part positioning robot, 226</td>
</tr>
<tr>
<td>PolyBot, 130</td>
</tr>
<tr>
<td>post and beam structures, robot for installation of, 157</td>
</tr>
<tr>
<td>post-building-demolition/post-disaster cleanup robot, 281–282</td>
</tr>
<tr>
<td>quadcopters, 126–128</td>
</tr>
<tr>
<td>rail-guided automatic on-ground logistics, 121–122</td>
</tr>
<tr>
<td>building facade maintenance robot, 261</td>
</tr>
<tr>
<td>facade cleaning robot, 263–266</td>
</tr>
<tr>
<td>facade cleaning robot “Canadian Crab”, 255–256</td>
</tr>
<tr>
<td>ground level concrete distributor, 84</td>
</tr>
<tr>
<td>overhead digging robots, 25, 29</td>
</tr>
<tr>
<td>overhead logistics system, 119</td>
</tr>
<tr>
<td>real-time monitoring systems, 295–297</td>
</tr>
<tr>
<td>reinforcement production and positioning robots, 39–46</td>
</tr>
<tr>
<td>automated crane for rebar positioning, 43–44</td>
</tr>
</tbody>
</table>
reinforcement production and positioning robots (cont.)
 for on-site shaping of reinforcement bars, 42–43
 for positioning of heavy bar, 40
 for positioning of heavy reinforcement bars, 45
 for positioning of vertical reinforcement bars, 46
 reinforcing bar fabrication robot, 40–41
 reinforcing bar fabrication robot, 40
 Rethink Robots, 201–202
 RiCOPTER maximum take-off mass (MTOM), 21
 Riegl, 20
 RIEGL laser scanners, 15
 RIWEA (Robot for the Inspection of Wind Turbine Rotor Blades), 250–252
 ROB Technologies AG, 179–180
 Robocoon mobile floor troweling robot, 96
 Robocranes, 142–143
 Robosoft, 256–257
 robot composition
 basics of, ix, 8
 future research, 13
 STCRs and, 8–9
 robot oriented design (ROD), 1, 297
 robotic construction lift, 111–113
 robotic dumper, 35
 Robotics & Intelligent Construction Automation Lab, 15
 robotized conventional construction machines, 31–38
 add-on modules for upgrading, 35–36
 AutoMine product family, 38
 autonomous construction equipment, 34–35
 robotic dumper, 35
 Volvo Construction Equipment concept machines, 32
 Robots and Automated Machines in Construction catalogue, 7
 ROBOTSYSTEM, 268–269
 “RobuGlass” facade cleaning robot, 256–257
 ROCCO (Robot Construction System for Computer Integrated Construction), 68
 roof cover installation robot, 165–166
 Rust Belt Robotics Lab, 70–71
 Samsung, 13, 141, 168, 212–214
 Sandvik Mining and Construction, 38
 Sang Ho Kim, 261
 “SB-Multi Coater” facade painting robot, 184–186
 Schena, Bruce, 234–235
 screeding robot LOM 110, 93–94
 SCX Special Projects Ltd., 266–267
 Sekisui Heim M1 prefabricated system, 1, 297
 Semi-Automated Masonry System (SAM) is, 75–77
 service, maintenance, and inspection robots, 243–274
 aeration system inspection robot, 272–273
 Bespoke Access Solution, 266–267
 bio-inspired facade inspection robot “C-Bot”, 252–253
 built-in-rail guided building facade maintenance robot, 261
 CA Fe semi-automated cost effective cleaning system, 254–255
 desk and chair arrangement robot, 270–271
 facade cleaning robot “RobuGlass”, 256–257
 facade cleaning robots for large glass facade of public buildings, 259–260
 facade element inspection robot “KABEDOHA”, 250
 facade inspection robot, 244–245, 246–247, 248–250
 facade maintenance robot, 247
 fire fighting robot, 268
 “Ladybird” robot for non-destructive ground sub-surface surveying, 270
 modular maintenance and rescue robot system, 267
 multi-purpose travelling vehicle (MTV), 271
 rail guided facade cleaning robot “Canadian Crab”, 255–256
 rail guided face cleaning robots, 263–266
 RIWEA (Robot for the Inspection of Wind Turbine Rotor Blades), 250–252
 tile facade inspection robot, 243–244
 universal firefighting and handling robot, 268–269
 Seunghoon Lee, 261
 Shinryo Corporation, 273–274
 Shiraishi, 25
 “Shuttle System” for facade element installation, 168–169
 SIIA Technology AG, 179–180
 Silver, Mike, 70–71
 simulation systems, 295–297
 single-task construction robots (STCRs) analysis and classification network, 6–8
 analysis of composition of, 8–13
 categories of, 14–23
 bricklaying robots, 62–77
 concrete distribution robots, 77–84
 concrete finishing robots, 94–99, 108
 concrete levelling and compaction robots, 86–94
 crane-end effectors, 139–146
 earth and foundation work robots, 23–31
 exoskeletons, wearable robots and assistive devices, 202–214
 facade coating and painting robots, 184–196
 facade installation robots, 155–175
 fireproof coating robots, 237–243
 humanoid construction robots, 196–202
 interior finishing robots, 215–236
 reinforcement production and positioning robots, 39–46
 renovation and recycling robots, 274–290
<table>
<thead>
<tr>
<th>Index</th>
<th>333</th>
</tr>
</thead>
<tbody>
<tr>
<td>robotized conventional construction machines, 31–38</td>
<td>structure-reconfiguring robots, 137–139</td>
</tr>
<tr>
<td>service, maintenance, and inspection robots, 243–274</td>
<td>Studbot robot for installation of partition-wall framing, 234–235</td>
</tr>
<tr>
<td>site logistics robot, 109–123</td>
<td>Sung Min Moon, 261</td>
</tr>
<tr>
<td>steel welding robots, 146–155</td>
<td>Sung Won Kim, 261</td>
</tr>
<tr>
<td>swarm robotics and self-assembling building structures, 128–139</td>
<td>Supernumerary Robotic Limbs (SRLs), 210–212</td>
</tr>
<tr>
<td>tile setting and floor finishing robots, 175</td>
<td>Surf Robo mobile concrete floor finishing robot, 102–104</td>
</tr>
<tr>
<td>comparison of kinematic structures of, 10–13 development of, 302–303</td>
<td>swarm robotics and self-assembling building structures, 128–139</td>
</tr>
<tr>
<td>future research, 13</td>
<td>automatic modular assembly system, 131–133</td>
</tr>
<tr>
<td>history and development of, 2–4</td>
<td>Molecubes, 135–137</td>
</tr>
<tr>
<td>on-site manufacturing and, 291–292, 297–299</td>
<td>PolyBot, 130</td>
</tr>
<tr>
<td>overview, 1–2</td>
<td>space construction robotics, 129–130</td>
</tr>
<tr>
<td>robot composition and, 8–9</td>
<td>structure-reconfiguring robots, 137–139</td>
</tr>
<tr>
<td>strengths and weaknesses of, 4–6 symbols and representations of, 9</td>
<td>TERMES (termite-inspired robot construction team), 133–135</td>
</tr>
<tr>
<td>SIRIUS facade cleaning robot platform, 257–259</td>
<td>Tachi, Susumu, 297</td>
</tr>
<tr>
<td>site logistics robot, 109–123</td>
<td>Tachi Laboratory, 268</td>
</tr>
<tr>
<td>automated construction lift, 109–110</td>
<td>Tambakevicius, E., 95</td>
</tr>
<tr>
<td>automated horizontal/vertical on-site logistics system, 118</td>
<td>Tambakevicius, M., 95</td>
</tr>
<tr>
<td>automated mini logistics unit, 123</td>
<td>Technische Universität München, 175</td>
</tr>
<tr>
<td>automated on-site delivery system, 115–117</td>
<td>Tera, Y., 131–133</td>
</tr>
<tr>
<td>automated on-site logistics system, 117–118</td>
<td>TERMES (termite-inspired robot construction team), 133–135</td>
</tr>
<tr>
<td>automated vertical material delivery lift, 110–111</td>
<td>Thalmic Labs, 212–214</td>
</tr>
<tr>
<td>modular multi robotic on-site delivery and working platform system, 122</td>
<td>Tiger-Stone, 180–184</td>
</tr>
<tr>
<td>on-site overhead logistics system, 121</td>
<td>tile facade inspection robot, 243–244</td>
</tr>
<tr>
<td>rail-guided automatic on-ground logistics, 121–122</td>
<td>tile setting and floor finishing robots, 175</td>
</tr>
<tr>
<td>rail-guided overhead logistics system, 119</td>
<td>for installation of tiles to facades, 176–177</td>
</tr>
<tr>
<td>robotic construction lift, 111–113</td>
<td>mobile robotic tiling machine, 179–180</td>
</tr>
<tr>
<td>site-covers, 295</td>
<td>for paving floors with ceramic tiles, 178–179</td>
</tr>
<tr>
<td>“Six linked X type rebar automatic bender unit”, 42</td>
<td>TMSUK, 281–282</td>
</tr>
<tr>
<td>Slocum, Alex, 234–235</td>
<td>TN-Fukkun fireproof coating robot, 241</td>
</tr>
<tr>
<td>SMART (Shimizu Manufacturing System by Advanced Robotics Technology), 292, 302</td>
<td>Toda, 3–4, 241, 278</td>
</tr>
<tr>
<td>smart glasses, 212–214</td>
<td>Tokimec, 96</td>
</tr>
<tr>
<td>So Ra Park, 261</td>
<td>Tokyo Institute of Technology, 131–133</td>
</tr>
<tr>
<td>Solid Material Assembly System (SMAS), 65</td>
<td>Tokyo Skytree, 6</td>
</tr>
<tr>
<td>SSR series fireproof coating robots, 238–240</td>
<td>Toyota Construction Co., Ltd., 27, 83, 192, 222, 223, 270</td>
</tr>
<tr>
<td>stationary concrete distribution, 78–79</td>
<td>Toyota Motor Corp., 297</td>
</tr>
<tr>
<td>steel welding robots, 146–155</td>
<td>Trackbot robot for installation of partition-wall framing, 234–235</td>
</tr>
<tr>
<td>AUWEL 3 small sized column welding robot, 154</td>
<td>truss structures, robotic assembly of, 62</td>
</tr>
<tr>
<td>steel assembly welding robot, 155</td>
<td>Universal Robots, 214</td>
</tr>
<tr>
<td>steel beam welding robot, 147, 153–154</td>
<td>Universidad Politecnica de Madrid, 254–255</td>
</tr>
<tr>
<td>steel column welding robot, 148–149, 152–153</td>
<td>University at Buffalo, 70–71</td>
</tr>
<tr>
<td>WELMA steel column welding robot, 149–151</td>
<td>University of Pennsylvania, 126–128</td>
</tr>
<tr>
<td>structured environment (SE), 1</td>
<td>University of Stuttgart, 67–68</td>
</tr>
<tr>
<td></td>
<td>University of Tokyo, 3–4, 268</td>
</tr>
<tr>
<td></td>
<td>University of Würzburg, 17</td>
</tr>
<tr>
<td></td>
<td>unmanned aerial vehicles (UAVs), 18–23</td>
</tr>
<tr>
<td></td>
<td>Urakami, 189</td>
</tr>
</tbody>
</table>
Index

U.S. National Centre for Manufacturing Science, 206–208
Valentioniene, K., 95
Vanku B. V., 180–184
vertical reinforcement bars, positioning and joining of, 46
Volvo Construction Equipment, 32
Vuzix, 212–214
Wachsmann, Konrad, 61–62
Wacker Neuson, 35
Walking Assist device with Bodyweight Support System, 209–210
wallpapering robot, 227
Wan Soo Kim, 208–209
WASCOR (Waseda Construction Robot Group), 1, 3–4, 292, 296, 297
Waseda University, 3–4
water blasting robot, 282
wearable robots, See exoskeletons, wearable robots and assistive devices
welding robots, welding robots, 146–155
AUWEL 3 small sized column welding robot, 154
steel assembly welding robot, 155
steel beam welding robot, 147, 153–154
steel column welding robot, 148–149, 152–153
WELMA steel column welding robot, 149–151
WELMA steel column welding robot, 149–151
WINSPEC air volume measuring robot, 273–274
Wyss Institute for Biologically Inspired Engineering, 133–135
Yasukawa, 198
Yim, Mark, 130
Yong Seok Lee, 261
Ziegler, Andy, 234–235
Zuykov, Viktor, 135–137