CONSTRUCTION ROBOTS

Elementary Technologies and Single-Task Construction Robots

Single-task construction robots (STCRs) are robots developed for use on the construction site. After the first experiments in large-scale prefabrication were successfully conducted in Japan, and the first products proved successful on the market, the main contractor, Shimizu (1975, Tokyo), set up a research group for on-site construction robots. The focus initially was set on simple systems able to execute single, specific construction tasks in a repetitive manner. Today STCRs are a worldwide research and development theme, and the tasks and application fields of STCRs expand continuously. Whereas the first approaches done in Japan built on relatively simple manipulators and mobile platforms used to distribute concrete, finish floors, install wall panels and move material, recently new forms of STCRs have emerged building on aerial approaches, additive manufacturing technologies, exoskeletons, swarm robotic approaches, self-assembling building structures and humanoid robot technology. This volume features 200 STCRs classified into 24 categories.

Thomas Bock is a professor of building realization and robotics at Technische Universität München (TUM). His research for the past 35 years has focused on automation and robotics in building construction, from the planning, prefabrication, on-site production and utilization phases to the reorganization and deconstruction of a building. His educational and professional experience is mostly from Europe, United States and Japan. He is a member of several boards of directors of international associations and of several international academies in Europe, the Americas and Asia. He consulted several international ministries and evaluates research projects for various international funding institutions. He holds honorary doctor and professor degrees, as well as fellowships and visiting professorships. Professor Bock serves on several editorial boards, heads various working commission and groups of international research organizations, and has authored and co-authored Cambridge University Handbook Series on Construction Robotics and more than 400 articles.

Thomas Linner is a research associate in building realization and robotics at Technische Universität München (TUM). During the last few years, he has supervised some major research projects, with a focus on the deployment of advanced technology in the building sector. He is a specialist in the area of automated production of building products as well as in the enhancement of the performance of building products by advanced technology. He completed his dissertation in the field of construction automation, focussing on automated/robotic on-site factories. Increasingly, the generation of innovation strategies, business models, value systems and innovative manufacturing organization methods complementary with advanced technology in construction is becoming the central issue in his research. Dr. Linner has been an invited speaker at universities such as the University of Tokyo and Cambridge University. He has received several prizes and grants, including a Japanese Center of Excellence Grant for research in Japan.
CAMBRIDGE HANDBOOKS ON CONSTRUCTION ROBOTICS

The Cambridge Handbooks on Construction Robotics series focuses on the implementation of automation and robot technology to renew the construction industry and arrest its declining productivity. The series is intended to give professionals, researchers, lecturers, and students basic conceptual and technical skills and implementation strategies to manage, research, or teach the implementation of advanced automation and robot technology–based processes and technologies in construction. Currently, the implementation of modern developments in product structures (modularity and design for manufacturing), organizational strategies (just in time, just in sequence, and pulling production), and informational aspects (computer-aided design/manufacturing or computer-integrated manufacturing) are lagging because of the lack of modern integrated machine technology in construction. The Cambridge Handbooks on Construction Robotics books discuss progress in robot systems theory and demonstrate their integration using real systematic applications and projections for off-site as well as on-site building production.

Robotic Industrialization: Automation and Robotic Technologies for Customized Component, Module, and Building Prefabrication ISBN 9781107076396
Site Automation: Automated/Robotic On-Site Factories ISBN 9781107075979
Construction Robots

ELEMENTARY TECHNOLOGIES AND SINGLE-TASK CONSTRUCTION ROBOTS

Thomas Bock
Technische Universität München

Thomas Linner
Technische Universität München
Contents

Acknowledgements
page vii

1 **Introduction**
page 1
1.1 History and Development of the STCR Approach
2
1.2 Strengths and Weaknesses of the STCR Approach
4
1.3 Analysis and Classification Framework
6
1.4 Analysis of Composition of STCRs
8
1.4.1 Basics of Robot Composition
8
1.4.2 Robot Composition and STCRs
8
1.4.3 Symbols and Representations of Kinematic Structure of STCRs
9
1.4.4 Comparison of Kinematic Structures of STCRs
10
1.4.5 Future Research Tasks Related to STCR Robot Composition
13

2 **Single-Task Construction Robots by Category**
14
2.1 Automated Site-Measuring and Construction Progress Monitoring
14
2.1.1 Mobile Robots
14
2.1.2 Aerial Robots
18
2.2 Earth and Foundation Work Robots
23
2.3 Robotized Conventional Construction Machines
31
2.4 Reinforcement Production and Positioning Robots
39
2.5 Automated/Robotic 3D Concrete Structure Production on the Site
46
2.6 Automated/Robotic 3D Truss/Steel Structure Assembly on the Site
58
2.7 Bricklaying Robots
62
2.8 Concrete Distribution Robots
77
2.9 Concrete Levelling and Compaction Robots
86
2.10 Concrete Finishing Robots
94
2.11 Site Logistics Robots
109
Contents

2.12 Aerial Robots for Building Structure Assembly 123
2.13 Swarm Robotics and Self-Assembling Building Structures 128
2.14 Robots for Positioning of Components (Crane End-Effectors) 139
2.15 Steel Welding Robots 146
2.16 Facade Installation Robots 155
2.17 Tile Setting and Floor Finishing Robots 175
2.18 Facade Coating and Painting Robots 184
2.19 Humanoid Construction Robots 196
2.20 Exoskeletons, Wearable Robots, and Assistive Devices 202
2.21 Interior Finishing Robots 215
2.22 Fireproof Coating Robots 237
2.23 Service, Maintenance, and Inspection Robots 243
2.24 Renovation and Recycling Robots 274

3 Transition and Technological Reorientation towards Integrated On-Site Manufacturing ... 291

3.1 Development and Refinement of Automated On-Site Logistics 292
3.2 Development of Climbing Robots 293
3.3 Refinement of Site-Cover Technology 295
3.4 Introduction of Simulation and Real-Time Monitoring Technology in Construction 295
3.5 Introduction of Robot-Oriented Design Strategies in Construction 297
3.6 First Concepts for Integrated Sites: Cooperating STCRs 297
3.7 First Concepts for Integrated Sites: Factory Approach 299

4 From Stand-Alone Solutions to Systems Integrated by Structured Environments ... 302

References 305
Glossary 315
Index 327
Acknowledgements

Construction automation gained momentum in the 1970s and 1980s in Japan, where the foundations for real-world application of automation in off-site building manufacturing, single-task construction robots, and automated construction sites were laid. This book series carries on a research direction and technological development established within this “environment” in the 1980s under the name Robot-Oriented Design, which was a focal point of the doctoral thesis of Thomas Bock at the University of Tokyo in 1989. In the context of this doctoral thesis many personal and professional relationships with inventors, researchers, and developers in the scientific and professional fields related to the construction automation field were built up. The doctoral thesis that was written by Thomas Linner (Automated and Robotic Construction: Integrated Automated Construction Sites) in 2013 took those approaches further and expanded the documentation of concepts and projects. Both of these form the backbone of the knowledge presented in this book series.

The authors first wish to express their deepest gratitude to Prof. Dr. Yositika Uchida, Prof. Dr. Y. Hasegawa, and Prof. Dr. Umetani (TIT); Dr. Tetsuji Yoshida, Dr. Junichi Maeda, Dr. Yamazaki, Dr. Matsumoto, Mr. Abe, and Dr. Ueno (Shimizu); Prof. Yashiro, Prof. Matsumura, Prof. Sakamura, Prof. Arai, Prof. Funakubo, Prof. Hatamura, Prof. Inoue, Prof. Tachi, Prof. Sato, Prof. Mitsuishi, Prof. Nakao, and Prof. Yoshikawa (UoT); Dr. Oiishi and Mr. Fujimura (MHI); Dr. Muro, Kanaïwa, Miyazaki, Tazawa, Yuasa, Dr. Sekiya, Dr. Hoshino, Mr. Arai, and Mr. Morita (Takenaka); Dr. Arai, Dr. Chae, Mr. Mashimo, and Mr. Mizutani (Kajima); Dr. Shiokawa, Dr. Hamada, Mr. Furuya, Mr. Ikeda, Mr. Wakizaka, Mr. Suzuki, Mr. Kondo, Mr. Odakuda, Mr. Harada, Mr. Imai, Mr. Miki, and Mr. Doyama (Ohbayashi); Dr. Yoshitake, Mr. Sakou, Mr. Takasaki, Mr. Ishiguro, Mr. Morishima, Mr. Kato, and Mr. Arai (Fujita); Mr. Nakamura, Mr. Tanaka, and Mr. San-no (Goyo/Penta Ocean); Mr. Nagao and Mr. Sone (Maeda); Mr. Ohmori, Mr. Maruyama, and Mr. FukuZawa (Toda); Dr. Ger Maas (Royal BAM Group); Dr. Espling, Mr. Jonsson, Mr. Fritzson, Mr. Junkers, Mr. Andersson, and Mr. Karlson (Skanska); Mrs. Jansson, Mrs. Johanson, Mr. Salminen, Mr. Apleberger, Mr. Lindstrom, Mr. Enгрström, and Mr. Andreassen (NCC); Mr. Hirano (Nishimatsu); Mr. Weckenmann (Weckenmann); Mr. Ott and Mr. Weimar (Handtech); Mr. Bauer and Mr. Flohr (Cadolto); Mr. Kakiwada, Mr. Ohmae, Mr. Sawa, Mr. Yoshimi, Mr. Shimizu, and Mr. Oki (Hazama Gumi); Mr. Masu, Mr. Oda, and Mr. Shuji (Lixil); Mr. Yanagihara, Mr. Oda, Mr. Kanazashi, and
Acknowledgements

Mr. Mitsunaga (Tokyu Kensetsu); Mr. Okada (Panasonic); Mr. Nakashima and Mr. Kobayashi (Kawasaki HI); Mr. Tazawa (Shikajiwajima HI); Mr. Okaya (IHI Space); Dr. Morikawa and Mr. Shirasaka (Mitsubishi Denki); Mr. Maeda, Mr. Matsumoto, and Mr. Kimura (Hitachi Zosen); Mr. Shiroki and Mr. Yoshimura (Daiwa House); Mr. Hagiwara and Mr. Hashimoto (Misawa Homes); Mr. Okubo (Mitsui Homes); Dr. Itoh, Mr. Shibata, Mr. Kasugai, Mr. Kato, and Mr. Komeyama (Toyoda Homes); Mr. Hirano, Mr. Kawano, and Mr. Takahashi (Toyota Motors); Dr. K. Ohno (+); Dr. Misawa, Dr. Mori, Nozoe, Tanaki, Okada, and Dr. Fujii (Taisei); Prof. P. Sulzer and Prof. Helmut Weber (+); Prof. Dr. Fazlur Khan (+); Prof. Dr. Myron Goldsmith (+ IIT); Prof. A. Warzawski (+ Techmion); Prof. R. Navon, Prof. Y. Rosenfeld, Prof. Dr. S. Isaac, Prof. A. Mita, Prof. A. Watanabe, Prof. Kodama, and Prof. Suematsu (Toyota National College of Technology); Mr. Suetomoto, Mr. Yoshida, Mr. Oku, and Mr. Okubo (Komatsu); Dr. Ogawa and Mr. Tanaka (Yasukawa); Dr. Inaba (Fanuc); Mr. Usami (Hitachi RI); Mr. Ito and Mr. Hattori (Mitsubishi RI); Mr. Noda, Mr. Ogawa, and Mr. Yoshimi (Toshiba); Mr. Senba (Hitachi house tec); Mr. Sakurai, Mr. Hada, Mr. Sugiuira, Mr. Yoshikawa, Mr. Shimizu, Mr. Tanaka, Mr. Nishiwaki, and Mr. Nomura (Sekisuhi Heim); Mr. Aoki, Mr. Watanabe, Mr. Kotani, and Mr. Kudo (Sekisuhi House); Mr. Takamoto, Mr. Mori, Mr. Baba, Mr. Sudo, Mr. Fujita, and Mr. Hiyama (TMus); Prof. Dr. T. Fukuda, Prof. Iguchi, Prof. Ohbayashi, Prof. Tamaki, Mr. Yanai, and Mr. Hata (JRA); Mr. Uchida (JCMA); Dr. Kodama (Construction Ministry Japan); Dr. Sarata (AIST); Mr. Yamamoto (DoKen); Mr. Yanouchi (Ken-ken); Mr. Yoshida (ACTEC); Prof. Dr. Wolfgang Bley, Prof. Dr. G. Kühn, and Jean Prouve (+); Dr. Sekiya, Dr. Yusuke Yamazaki, Prof. Dr. Ando, Prof. Dr. Seike, Prof. Dr. J. Skibniewski, Prof. Dr. C. Haas, Dr. R. Wing, Prof. Dr. David Gann, Prof. Dr. Puente, Prof. Dr. P. Coiffet, Prof. Dr. A. Bulgakov, Prof. Dr. Arai, Prof. Dr. A. Chauhan, Prof. Dr. Spath, Dr. M. Hagele, Dr. J.J. Salagnac, and Prof. Cai (HIT); Prof. Dr. Szymanski (+); Prof. Dr. F. Haller (+); Prof. Dr. Tamura and Prof. Dr. Han.

The authors wish to express their very sincere gratitude to the Japanese guest Professors Dr. K. Endo and Dr. H. Shimizu for supporting and advising the authors during their stays at the authors’ chair in Munich. Furthermore, the authors are very thankful to all the companies in the field of component manufacturing, prefabrication, and on-site automation outlined throughout the book series for the information, analyses, pictures, and details of their cutting-edge systems and projects that they shared and provided.

The authors are indebted to the AUSMIP Consortium and the professors and institutions involved for supporting their research. In particular, the authors extend their thanks to Prof. Dr. S. Matsumura, Prof. Dr. T. Yashiro, Prof. Dr. S. Murakami, Dr. S. Chae, Prof. Dr. S. Kikuchi, Assistant Prof. Dr. K. Shibata, Prof. Dr. S.-W. Kwon, Prof. Dr. M.-Y. Cho, Prof. Dr. D.-H. Hong, Prof. Dr. H.-H. Cho, Prof. A. Deguchi, and Prof. B. Peeters and their students and assistants for supporting the authors with information and organizing and enabling a multitude of important site visits. Furthermore, the authors gratefully acknowledge the International Association for Automation and Robotics in Construction, whose yearly conferences, activities, publications, and network provided a fruitful ground for their research and a motivation to follow their research direction.

The authors are indebted in particular to M. Helal, W. Pan, and K. Iturralde for their great support in the phase of completing the volume. The authors thank
Acknowledgements

Dr.-Ing. C. Georgoulas, A. Bittner, and J. Güttler for their advice and support. In addition, the authors thank I. Arshad, P. Anderson, and N. Agrafiotis.

The authors are sincerely grateful also to their numerous motivated students within the master course Advanced Construction and Building Technology who have, as part of lab or coursework, contributed to the building of the knowledge presented and who have motivated the authors to complete this book series.