Index

ABCS. See automated building construction system
Akatuki 21, 37–40
CS in, 39
efficiency analysis of, 40
elevation for, 38
d-end-effectors in, 14–15
evolution scheme for, 37–38
FEC time for, 40
ground factory delivery yard and, 38
ground factory parts/components stick yard and, 38
ground plan for, 38
HDS in, 38
management system in, 39
MHSPY and, 38
process monitoring for, 40
product quality for, 40
real-time monitoring system in, 39
ROD for, 40
rough project schedule for, 40
in SF structure, 39
subsystems in, 38–39
system variations for, 39–40
VDS in, 38–39
welding robot systems in, 39
AMURAD system. See automatic up-rising construction by advanced technique system
analysis framework, for system efficiency adaptability and, 301–302
for automated/robotic on-site factories, 1, 2–5
configurations and, 301–302
for construction industry, 2
data methodology for, 3–5
for efficiency parameters, 3, 4
erection speed and, 301
for health and safety issues, 303
for productivity, 302–303
for quality issues, 303
for resources, 303
for roof push-up construction method, 77–79
technical capability and, comparisons to, 2, 3–301
through usability studies, 303
automated building construction systems (ABCS), 11–37. See also decentralized ABCS; hybrid-ABCS
alignment and accuracy measurement systems, 14
big canopy, 15
CS in, 13
degrees of automation in, 17
efficiency analysis for, 15–19
elevation in, 13
d-end-effectors in, 14–15
evolution scheme, 12
façade element delivery and installation system in, 14
factory roof structure in, 13
FEC of, 16–17
ground plan in, 13
HDS in, 13–14
learning effects of, 18
management systems in, 14
mobile logistics robots in, 14
process monitoring and, 18
product quality and, 18
productivity of, 18
real-time monitoring in, 14
ROD for, 15
rough project schedule with, 15–16
safety of, 18–19
subsystems in, 13–14
system configuration in, 17
system variations in, 15
usability of, 19
VDS in, 13
welding robot systems in, 14
worker teams in, 17
automated/robotic on-site factories, 1, 2–5
AMURAD system, 8–9
elevation in, 13
ONM environments and, 2
automated/robotic on-site factories (cont.)

STCR technology and, 1
for TBM’s, 9

automatic up-rising construction by advanced technique (AMURAD) system, 8–9, 175–182
balcony positioning system in, 177
efficiency analysis for, 178–182
elevation in, 175
end-effectors in, 177
evolution scheme for, 175
FEC for, 180
ground plan for, 176
J-Up system compared to, 193
management system in, 177
MHSPY in, 176
on-site component storage, 177
product quality with, 182
productivity of, 180–181
push-up mechanisms in, 176
rail-guided ground-based robots and, 176
real-time monitoring in, 177
ROD for, 178
subsystems in, 176–177
System Skanska compared to, 193
systems variations for, 177–178
VDS in, 176–177

balcony positioning system, 177
Bauhelling Sommerfeld, 213–216
elevation in, 214
end-effectors in, 214–215
evolution scheme for, 213–214
ground plan for, 214
HDS in, 213–214
ROD for, 216
subsystems in, 214
system variations in, 215
VDS in, 214
Bauschiff system, 218–219
elevation in, 219
end-effectors in, 219
evolution scheme for, 218–219
ground plan for, 219
HDS in, 219
ROD for, 219
subsystems in, 219
system variations, 219
VDS in, 219

Big Canopy, 119–130
ABCS, 15
CS in, 121
degrees of automation for, 123
detailed project schedule for, 122–123
efficiency analysis for, 122–130
elevations with, 120–121
end-effectors in, 122
evolution scheme for, 120
FEC for, 123
ground plan for, 121
HDS in, 121–122

learning effects in, 125
physical strain for workers and, 130
process monitoring and, 125–126
product quality and, 125–126
productivity with, 123–125
real-time monitoring in, 122
ROD for, 122
RTMMS and, 125–126
safety issues with, 126–128
subsystems in, 121–122
system variations in, 122
VDS in, 121
weather influences on, 130
worker teams and, 123
civil engineering construction sites, 9
climbing systems (CS)
in ABCS, 13
in Akatuki 21, 39
in Big Canopy, 121
girder framework bridges as, 10
in Hat Down method, 261
in hybrid-ABCS, 233
in Hybrid-SMART system, 240
in MCCS, 66
in Move Hat method, 278
in RCACS, 166
in RCM, 283
in roof push-up construction method, 76
in roof-robo automated construction system, 85
in SF, 10
in SMART, 91
in SMART Light, 145
in System Netherlands, 113
in TECOREP System, 271
in Tower-SMART, 226
in TS-Up, 223
in T-Up, 154
closed Sky Factory (CSF), 259. See also Hat Down method; Taisei Ecological Reproduction (TECOREP) System
civil engineering construction sites, i, vii, 164
civil engineering construction sites, 9
civil engineering construction sites, 56. See also automated building construction system; roof push-up construction method: specific factories
CS. See climbing systems
CSF. See closed Sky Factory
curtaill handling system, 86
Cut and Take Down method (DARUMA), 290–292
demolishing process in, 292
elevation in, 292
end-effectors in, 292
evolution scheme for, 291
ground plan for, 292
ROD for, 292
subsystems in, 292
system variations in, 292
DARUMA. See Cut and Take Down method
decentralized ABCS, 247–249
elevation in, 248
definition in, 249
evolution scheme for, 247–248
ground plan for, 248
real-time monitoring in, 249
ROD for, 249
subsystems in, 248–249
system variations for, 249
VDS in, 248
welding robot systems in, 248–249
decentralized SMART, 253–254
elevation in, 253
definition in, 254
evolution scheme for, 253
ground plan for, 253
ROD for, 254
subsystems for, 253–254
VDS in, 254
deconstruction systems, 257–258, 259
delivery systems. See horizontal delivery system;
parallel delivery systems, specifications for;
vertical delivery system
definitions
in ABCS, 14–15
in Akatuki, 21, 14–15
in AMURAD system, 177
in Bauhelling Sommerfeld, 214–215
in Bauchiff system, 219
in Big Canopy, 122
in DARUMA, 292
in decentralized ABCS, 249
in decentralized SMART, 254
in FACES, 52–53
in Hat Down method, 262
HDS and, 14–15
in hybrid-ABC, 234
in Hybrid-SMART system, 241
in J-Up system, 201
in MCCS, 67
in Move Hat method, 279
in QB-Cut-off, 289
in RCACS, 167
in RCM, 284
in roof push-up construction method, 77
in roof-robo automated construction system, 86
in SMART, 92
in SMART Light, 145
in System Netherlands, 113
in System Skanska, 196–197
in TECOREP System, 272
in Tower-SMART, 228
in TS-U, 223
in T-U, 156
facade element delivery and installation system, 14
facade element positioning system, 76
FACES. See future automated construction
efficient system
factory roof structure, in ABCS, 13
FEC. See floor erection cycle
fireproof coating system, 86
floor erection cycle (FEC)
of ABCS, 16–17
of Akatuki, 21, 40
for AMURAD system, 180
for Big Canopy, 123
for FACES, 55
for hybrid-ABC, 235
for MCCS, 67
for roof push-up construction method, 77
for SMART, 93
future automated construction efficient system
(FACES), 50–56. See also sky factory
degree of automation for, 56
detailed project schedule for, 53
efficiency analysis for, 51, 53–56
definitions in, 52–53
evolution scheme for, 50–51
FEC for, 55
ground plan for, 51
HDS in, 52
management systems in, 52
MHSYP in, 51
OMs in, 51
process monitoring for, 56
product quality for, 56
productivity of, 56
real-time monitoring systems in, 52
ROD for, 53
SF structure in, 51–52
speed of equipment for, 56
subsystems in, 51–52
system configuration for, 56
system variations for, 53
technical data for, 56
VDS in, 51
welding robot systems in, 52
worker teams for, 56
girder framework bridges, as climbing system, 10
ground factories, 174, 176, 193, 213, 289–290. See also automatic up-rising construction by
advanced technique system; Cut and Take
Down method; System Skanska
Hat Down method, 260–263
CS in, 261
elevation in, 261
definitions in, 262
evolution scheme for, 260–261
ground plan for, 261
HDS in, 261
MHSYP in, 262
real-time monitoring in, 262
ROD for, 262–263
subsystems in, 261–262
system variations in, 262
horizontal delivery system (HDS) in ABCS, 13–14
in Akatuki 21, 38
in Bauhelling Sommerfeld, 213–214
in Bauschiff system, 219
in Big Canopy, 121–122
end-effectors and, 14–15
in FACES, 52
ground factory, 38
in Hat Down method, 261
in hybrid-ABCS, 233, 240, 241
in MCCS, 66
in Move Hat method, 278–279
in QB Cut-off, 285
in RCACS, 166–167
in RCM, 283
in roof push-up construction method, 76
roof-robo automated construction system and, 85
in SF, 39
in SMART, 91
in SMART Light, 145
in System Netherlands, 113
in System Skanska, 196
in TECOREP System, 271
in Tower-SMART, 226–228
in TS-Up, 223
in T-Up, 155
Hybrid-ABCS, 15–16, 231–235
CS in, 233
efficiency analysis for, 234–235
elevation in, 231–232
end-effectors in, 234
evolution scheme for, 231
FEC for, 235
ground plan for, 232
HDS in, 233
real-time monitoring in, 233–234
ROD for, 234
subsystems in, 232–234
VDS in, 233
welding robot systems in, 233
Hybrid-SMART system, 239–241
CS in, 240
elevation in, 239–240
end-effectors in, 241
evolution scheme for, 239
ground plan for, 240
HDS in, 240, 241
real-time monitoring in, 241
ROD for, 241
subsystems for, 240–241
system variations for, 241
VDS in, 240–241
welding robot system in, 241
J-Up system, 199–201
AMURAD system compared to, 193
elevation in, 199
end-effectors in, 201
evolution scheme for, 199
ground plan for, 200–201
ROD for, 201
subsystems in, 201
machine running management system, 67
manufacturing systems, 2, 8–9
mast climbing construction system (MCCS), 65–68
alignment and accuracy measurement system in, 67
column catchers and, 66
CS in, 66
disassembly systems, 66
efficiency analysis for, 67–68
elevation in, 65–66
end-effectors in, 67
evolution scheme for, 65
FEC for, 67
ground plan for, 66
HDS in, 66
management system for, 67
real-time monitoring systems in, 67
ROD for, 67
SF structure and, 66
subsystems in, 66–67
systems variations for, 67
technical data speed of equipment for, 68
VDS in, 66
welding robot systems in, 67
material handling, sorting and processing yard (MHSPY), 38
AMURAD system, 176
in FACES, 51
in Hat Down method, 262
in Move Hat method, 279
in NCC Komplett, 207
in RCM, 284
in System Skanska, 196
in TECOREP System, 272
MCCS. See mast climbing construction system
MHSPY. See material handling, sorting and processing yard
mobile logistics robots, 14
Move Hat method, 277–279
CS in, 278
disassembly systems, 279
HDS in, 278–279
MHSPY in, 279
subsystems in, 279
VDS in, 279
Nagoya project, 94
NCC Komplett, 205–208
elevation of, 206–207
disassembly systems, 207
evolution scheme for, 205–206
ground plan for, 206–207
MHSPY in, 207
OM system in, 207
ROD for, 207–208
subsystems in, 207
off-site manufacturing (OFM), 10, 205. See also NCC Komplett
OMs. See overhead manipulators
on-site manufacturing (ONM). See also NCC Komplett
automated/robotic on-site factories, 2
cooperation with off-site factory, 205
efficiency rates for, 10
factory structure for, 207
mobility of, 9
OFM compared to, 10
for TBMs, 9
T-Up and, 155
open Sky Factory (OSF), 277. See also Move Hat method; quakeproof, quiet, quick and block-by-block deconstruction; reverse construction method
overhead interior finishing system, 77
overhead manipulators (OMs)
in FACES, 51
in NCC Komplett, 207
in roof-robo automated construction system, 84–85
in SE, 17
specifications for, 55
parallel delivery systems, specifications for, 124
PLC system. See programmable logic controller system
plumbing unit installation systems, 76–77
programmable logic controller (PLC) system, 196
progress management system, 67
quakeproof, quiet, quick and block-by-block deconstruction (QB Cut-off), 284–289
elevation in, 284
df-effectors in, 289
evolution scheme for, 284
ground plan for, 285
HDS in, 285
subsystems in, 285–288
VDS in, 285–288
rail-guided ground based robots, 176
RCACS. See robotic and crane-based automatic construction system
real-time monitoring
in ABCS, 14
in Akatuki 21, 39
in AMURAD system, 177
in Big Canopy, 122
in decentralized ABCS, 249
in FACES, 52
in Hat Down method, 262
in Hybrid-ABCs, 233–234
in Hybrid-SMART system, 241
in MCCS, 67
in SMART Light, 145
in System Netherlands, 113
for T-Up, 155–156
Real-Time Progress Management (RTPM), 164
Real-Time Visualization System (RTVS), 164, 167
reverse construction method (RCM), 280–284
CS in, 283
df-effectors in, 284
ground plan for, 282
HDS in, 283
MHSPY in, 284
subsystems for, 283–284
VDS in, 283
robot-oriented design (ROD)
for ABCS, 15
for Akatuki 21, 40
for AMURAD system, 178
for Bauhelling Sommerfeld, 216
for Bauschiff system, 219
for Big Canopy, 122
for DARUMA, 292
df-centralized ABCS, 249
df-centralized SMART, 254
for FACES, 53
for Hat Down method, 262–263
for Hybrid-ABCs, 234
for Hybrid-SMART system, 241
for J-Up system, 201
for MCCS, 67
for NCC Komplett, 207–208
for RCACS, 167
for roof push-up construction method, 77
for roof-robo automated construction system, 86
for SMART, 92
for SMART Light, 145
for System Netherlands, 113
for System Skanska, 197
for Tower-SMART, 228
for TS-Up, 223
for T-Up, 156
robotic and crane-based automatic construction system (RCACS), 164–167
dfstruction, vii
CS in, 166
elevation in, 164
df-effectors in, 167
evolution scheme for, 164
ground plan for, 164
HDS in, 166–167
in Korea, 164
material management system and, 167
ROD for, 167
RTPM and, 164
RTVS and, 164, 167
subsystems in, 164–167
system variations in, 167
VDS in, 166
ROD. See robot-oriented design
roof push-up construction method, 74–79
central control system in, 79
CS in, 76
degrees of automation in, 77–78
efficiency analysis for, 77–79
elevation in, 74
end-effectors in, 77
evolution scheme for, 74
façade element positioning system in, 76
FEC for, 77
ground plan for, 76
HDS in, 76
on-site control rooms with, 77
overhead interior finishing system in, 77
plumbing unit installation systems in, 76–77
process monitoring for, 79
product quality through, 79
productivity through, 78–79
ROD for, 77
sequence of, 79
simulation methods for, 78
sky factory structure and, 76
subsystems in, 76–77
system configuration for, 77–78
system variations for, 77
VDS in, 76
welding robot systems in, 76
worker teams with, 77–78
roof-robo automated construction system, 84–86
CS in, 85
curtain wall handling system and, 86
elevation in, 84–85
end-effectors in, 86
evolution scheme for, 84
fireproof coating system and, 86
ground plan for, 85
HDS and, 85
material delivery management system and, 86
OMs in, 84–85
ROD for, 86
subsystems in, 85–86
system variations with, 86
VDS and, 85
work processes in, 86
RTMMs, 92, 125–126
RTPM. See Real-Time Progress Management
RTVS. See Real-Time Visualization System
safety issues
with ABCS, 18–19
with Big Canopy, 126–128
efficiency analysis and, 303
with SMART, 99
self-supported ground factory, 213
SF. See sky factory
Shimizu manufacturing system by advanced robot technology (SMART), 89–113. See also
decentralized SMART; Hybrid-SMART system; SMART Light; Tower-SMART
construction waste reduction through, 96–97
CS in, 91
degrees of automation for, 95
detailed project schedule for, 92
efficiency analysis for, 92–99
elevation for, 90
end-effectors in, 92
evolution scheme for, 89–90
FEC for, 93
ground plan for, 90
HDS in, 91
learning effects of, 96
material handling systems in, 90–91
process monitoring, 99
product quality, 99
productivity of, 95
ROD for, 92
RTMMs and, 92
safety issues with, 99
subsystems in, 90–92
system configurations for, 95
system variations for, 92
trolley hoist manipulator system in, 91
VDS in, 91
welding robot systems in, 91
worker teams in, 95
simple tower manufacturing, 221. See also
tower-SMART; TS-Up
sky factory (SF). See also Big Canopy; SMART Light; totally mechanised construction system for high-rise buildings (T-Up); Tower-SMART; TS-Up
Akatuki 21 structure, 39
centralized, 230
CS in, types of, 10
CSF, 259
decentralized, 246–247
FACES structure, 51–52
HDS in, 39, 52
inner stages, 223
MCCS structure, 66
OMs in, 17
OSF, 277
outer stages, 223
pulled up by core, 152–153
roof push-up construction method structure, 76
for simple tower manufacturing, 221
VDS, 13
SMART. See Shimizu manufacturing system by advanced robot technology
SMART Light, 142–145
CS in, 145
elevation in, 142
end-effectors in, 145
evolution scheme for, 142
ground plan for, 144
HDS in, 145
real-time monitoring in, 145
ROD for, 145
Index 315

subsystems in, 145
system variations for, 145
VDS in, 145
Sommerfeld, Adolf, 213
STCR technology, 1
stilts, 10, 119
System Netherlands, 111–113
CS in, 113
elevation in, 111
depend-effectors in, 113
evolution scheme for, 111
ground plan in, 112–113
HDS in, 113
real-time monitoring in, 113
ROD for, 113
subsystems in, 113
system variations for, 113
VDS in, 113
System Skanska, 194–197
AMURAD system compared to, 193
elevation in, 195–196
depend-effectors in, 196–197
evolution scheme for, 194–195
ground plan for, 196
HDS in, 196
MHSPY in, 196
PLC system, 196
ROD for, 197
subsystems in, 196
system variations in, 197
Tai sei Ecological Reproduction (TECOREP) System, 270–272
CS in, 271
elevation in, 271
depend-effectors in, 272
evolution scheme for, 270–271
ground plan for, 271
HDS in, 271
MHSPY in, 272
subsystems in, 271–272
VDS in, 271
TBMs. See tunnel boring machines
TECOREP System. See Tai sei Ecological Reproduction System
totally mechanised construction system for high-rise buildings (T-Up), 153–156
alignment and accuracy measurement systems and, 155
CS in, 154
efficiency analysis for, 156
elevation in, 154
depend-effectors in, 156
evolution scheme for, 154
ground plan for, 154
HDS in, 155
interior finishing systems in, 155
ONM and, 155
real-time monitoring for, 155–156
ROD for, 156
subsystems in, 154–156
system variations for, 156
VDS in, 155
Tower-SMART, 225–228
CS in, 226
elevation in, 226
depend-effectors in, 228
evolution scheme for, 225–226
ground plan for, 226
HDS in, 226–228
ROD for, 228
subsystems in, 226–228
system variations in, 228
VDS in, 226
trolley hoist manipulator system, 91
TS-Up, 221–223
CS in, 223
elevation in, 222–223
depend-effectors in, 223
evolution scheme for, 221–222
ground plan for, 223
HDS in, 223
ROD for, 223
subsystems in, 223
system variations for, 223
VDS in, 223
tunnel boring machines (TBMs). 9
T-Up. See totally mechanized construction system for high-rise buildings
vertical delivery system (VDS), 13
in Akatuki 21, 38–39
in AMURAD system, 176–177
in Bauhelling Sommerfeld, 214
in Bauschiff system, 219
in Big Canopy, 121
in decentralized ABCS, 248
in decentralized SMART, 254
HDS and, 85
in Hybrid-ABC, 233, 240–241
in MCSS, 66
in Move Hat method, 279
in QB Cut-off, 285–288
in RCACS, 166
in RCM, 283
in roof push-up construction method, 76
in roof-robo automated construction system, 85
in SMART, 91
in SMART Light, 145
in System Netherlands, 113
in TECOREP System, 271
in Tower-SMART, 226
in TS-Up, 223
in T-Up, 155
vertical/horizontal finishing material delivery, 85
welding robot systems
in ABCS, 14
in Akatuki 21, 39
<table>
<thead>
<tr>
<th>Index</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>welding robot systems (cont.)</td>
<td></td>
</tr>
<tr>
<td>in decentralized ABCS, 248–249</td>
<td></td>
</tr>
<tr>
<td>in FACES, 52</td>
<td></td>
</tr>
<tr>
<td>in Hybrid-ABCS, 233</td>
<td></td>
</tr>
<tr>
<td>in Hybrid-SMART system, 241</td>
<td></td>
</tr>
<tr>
<td>in MCCS, 67</td>
<td></td>
</tr>
<tr>
<td>in roof push-up construction method, 76</td>
<td></td>
</tr>
<tr>
<td>in SMART, 91</td>
<td></td>
</tr>
<tr>
<td>Yokohama project, 94</td>
<td></td>
</tr>
<tr>
<td>Z-Carry, 180</td>
<td></td>
</tr>
<tr>
<td>Z-Hand, 180</td>
<td></td>
</tr>
<tr>
<td>Z-Up, 180</td>
<td></td>
</tr>
</tbody>
</table>