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A few things you need to know

0.1 Probability notation and prerequisites

The book assumes knowledge of the basic concepts of probability theory at
the level of a first graduate course. For readers’ convenience, we recall here
a few standard definitions and notational conventions: first, throughout the
book we use the following notation and abbreviations.

P(·) Probability of an event

E(·) Expectation of a random variable

1{·} The indicator (a.k.a. characteristic function) of an event/set

r.v. random variable

i.i.d. independent and identically distributed

a.s. almost surely
d
= equality in distribution

⇠ [a random variable] is distributed as [a distribution]
(see below for examples)

Second, we make occasional use of the standard terminology regarding
modes of convergence for sequences of random variables and probability
distributions, which are defined as follows.

Almost sure convergence. We say that a sequence (Xn)1n=1 of random vari-
ables converges almost surely to a limiting random variable X, and denote
Xn

a.s.���!
n!1 X, if P(Xn ! X as n! 1) = 1.
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2 A few things you need to know

Convergence in probability. We say that Xn converges in probability to X,
and denote Xn

P���!
n!1 X, if for any ✏ > 0, P(|Xn � X| > ✏)! 0 as n! 1.

In a few places, the term “convergence in probability” is used in a broader
sense that applies to convergence of random objects taking value in a more
general space than the real line. In such cases, the meaning of the conver-
gence statement is spelled out explicitly.

Convergence in distribution. We say that a sequence of distribution func-
tions Fn converges in distribution to a limiting distribution function F,
and denote Fn

d���!
n!1 F, if Fn(x) ! F(x) for any x 2 R that is a con-

tinuity point of F; the same definition applies in the case when Fn and
F are d-dimensional joint distribution functions. Similarly, we say that a
sequence (Xn)1n=1 of r.v.s (or, more generally, d-dimensional random vec-
tors) converges in distribution to F (a one-dimensional, or more generally
d-dimensional, distribution function), and denote Xn

d���!
n!1 F, if FXn con-

verges in distribution to F, where for each n, FXn denotes the distribution
function of Xn.

We will repeatedly encounter a few of the special distributions of prob-
ability theory, namely the geometric, exponential and Poisson distribu-
tions. The ubiquitous Gaussian (a.k.a. normal) distribution will also make
a couple of brief appearances. For easy reference, here are their definitions.

The geometric distribution. If 0 < p < 1, we say that an r.v. X has the
geometric distribution with parameter p, and denote X ⇠ Geom(p), if

P(X = k) = p(1 � p)k�1, (k = 1, 2, . . .).

The exponential distribution. If ↵ > 0, we say that an r.v. X has the
exponential distribution with parameter ↵, and denote X ⇠ Exp(↵), if

P(X � t) = e�↵t, (t � 0).

The Poisson distribution. If � > 0, we say that an r.v. X has the Poisson
distribution with parameter ↵, and denote X ⇠ Poi(�), if

P(X = k) = e��
�k

k!
, (k = 0, 1, 2, . . .).
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0.2 Little-o and big-O notation 3

The Gaussian distribution. If µ 2 R and � > 0, we say that an r.v. X
has the Gaussian distribution with mean µ and variance �2, and denote
X ⇠ N(µ,� 2), if

P(a  X  b) =
1p
2⇡�

Z b

a
e�(x�µ)2/2� dx, (a < b).

0.2 Little-o and big-O notation

Throughout the book, we are frequently concerned with asymptotic es-
timates for various quantities as a parameter (usually, but not always, a
discrete parameter n) converges to a limit (usually1). We use the standard
o(·) (“little-o”) and O(·) (“big-O”) notation conventions. In the typical case
of a discrete parameter n converging to 1 these are defined as follows. If
an and bn are functions of n, the statement

an = o(bn) as n! 1
means that limn!1 an/bn = 0. The statement

an = O(bn) as n! 1
means that there exists a constant M > 0 such that |an/bn|  M for all large
enough values of n. Similarly, one can define statements such as “ f (x) =
O(g(x)) as x ! L” and “ f (x) = o(g(x)) as x ! L”; we leave this variation
to the reader to define precisely. Big-O and little-o notation can also be
used more liberally in equations such as

an =
p

n + O(1) + O(log n) + o(cn) as n! 1,
whose precise meaning is “an � pn can be represented as a sum of three
quantities xn, yn and zn such that xn = O(1), yn = O(log n) and zn = o(cn).”
Usually such statements are derived from an earlier explicit description of
the xn, yn, and zn involved in such a representation. Frequently several big-
O and little-o expressions can be combined into one, as in the equation

O(1) + O(log n) + o(1/n) = O(log n) as n! 1.
As illustrated previously, asymptotic statements are usually accompanied
by a qualifier like “as n ! 1” indicating the parameter and limiting value
with respect to which they apply. However, in cases when this specification
is clear from the context it may on occasion be omitted.
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4 A few things you need to know

More information regarding asymptotic estimation methods, along with
many examples of the use of little-o and big-O notation, can be found in
[49], [93].

0.3 Stirling’s approximation

The canonical example of an interesting asymptotic relation is Stirling’s
approximation for n!. In the above notation it is written as

n! = (1 + o(1))
p

2⇡n(n/e)n as n! 1. (0.1)

We make use of (0.1) on a few occasions. In some cases it is su�cient to
use the more elementary (nonasymptotic) lower bound

n! � (n/e)n (n � 1), (0.2)

which is proved by substituting x = n in the trivial inequality ex � xn/n!
valid for all x � 0. The relation (0.1) is harder (but not especially hard)
to prove. A few di↵erent proofs can be found in [35, Section 6.3], [40],
Sections II.9 and VII.3 of [41], [49, Section 9.6], [106], and p. 312 of this
book.
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1

Longest increasing subsequences in random
permutations

Chapter summary. If � is a permutation of n numbers, we consider the
maximal length L(�) of an increasing subsequence of �. For a permutation
chosen uniformly at random from among all permutations of order n, how
large can we expect L(�) to be? The goal of this chapter is to answer this
question. The solution turns out to be rather complicated and will take us on
a journey through a fascinating mathematical landscape of concepts such as
integer partitions, Young tableaux, hook walks, Plancherel measures,
large deviation principles, Hilbert transforms, and more.

1.1 The Ulam–Hammersley problem

We begin with a question about the asymptotic behavior of a sequence of
real numbers. Let Sn denote the group of permutations of order n. If � 2 Sn

is a permutation, a subsequence of � is a sequence (�(i1),�(i2), . . . ,�(ik)),
where 1  i1 < i2 < . . . < ik  n. The subsequence is called an increasing
subsequence if �(i1) < �(i2) < . . . < �(ik), a decreasing subsequence
if �(i1) > �(i2) > . . . > �(ik), and a monotone subsequence if it is ei-
ther increasing or decreasing. Define L(�) to be the maximal length of an
increasing subsequence of �. That is,

L(�) = max
n

1  k  n : � has an increasing subsequence of length k
o

.

Similarly, define D(�) to be the maximal length of a decreasing subse-
quence of �, i.e.,

D(�) = max
n

1  k  n : � has a decreasing subsequence of length k
o

.
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6 Longest increasing subsequences in random permutations

For example, if � = (3, 1, 6, 7, 2, 5, 4), then L(�) = 3, since it has (sev-
eral) increasing subsequences of length 3, but no increasing subsequence
of length 4. Similarly, one can verify easily that D(�) = 3.

Now define the sequence of numbers

`n =
1
n!

X

�2Sn

L(�), (n = 1, 2, . . .).

That is, `n is the average of L(�) over all permutations of order n. For ex-
ample, the first few values in the sequence are `1 = 1, `2 = 3/2, `3 = 2,
`4 = 29/12, `5 = 67/24. We are interested in the problem of determining
the asymptotic behavior of `n as n grows large. A version of the problem
was first mentioned in a 1961 paper by Stanisław Ulam [138], a Polish-
American mathematician better known for his work on the hydrogen bomb.
In his paper, which concerned the Monte Carlo method for numerical com-
putation (which Ulam pioneered), he discussed briefly the idea of studying
the statistical distribution of the maximal monotone subsequence length
in a random permutation; this was brought up as an example of the kinds
of problems that can be attacked using Monte Carlo calculations. Subse-
quently, the question came to be referred to as “Ulam’s problem” by some
authors—starting with John M. Hammersley, who undertook (with some
success) the first serious study of the problem, which he presented in a
1970 lecture and accompanying article [54].1 To honor Hammersley’s con-
tribution to analyzing and popularizing Ulam’s question, we refer to the
problem here as the Ulam–Hammersley problem.

In this chapter and the next one we describe the developments leading
up to a rather complete solution of Ulam and Hammersley’s problem. The
techniques developed along the way to finding this solution did much more
than solve the original problem; in fact, they paved the way to many other
interesting developments, some of which are described later in the book.

To avoid unnecessary suspense, one form of the “final answer,” obtained
in 1998 by Jinho Baik, Percy A. Deift, and Kurt Johansson [11], is as fol-
lows: as n! 1, we have

`n = 2
p

n + cn1/6 + o(n1/6), (1.1)

where c = �1.77108 . . . is a constant having a complicated definition in
terms of the solution to a certain di↵erential equation, the Painlevé equation
of type II. We shall have to wait until Chapter 2 to see where this more
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1.2 The Erdős–Szekeres theorem 7

exotic part of the asymptotics comes from. In this chapter our goal is to
prove a first major result in this direction, which identifies only the leading
asymptotic term 2

p
n. The result, proved by Anatoly Vershik and Sergei

Kerov [142], [143] and independently by Benjamin F. Logan and Lawrence
A. Shepp [79] in 1977,2 is the following.

Theorem 1.1 (The asymptotics of `n) We have the limit

`np
n
! 2

as n ! 1. Furthermore, the limit is the same for the “typical” permu-
tation of order n. That is, if for each n, �n denotes a uniformly random
permutation in Sn, then L(�n)/

p
n! 2 in probability as n! 1.

1.2 The Erdős–Szekeres theorem

To gain an initial understanding of the problem, let us turn to a classical
result in combinatorics dating from 1935, the Erdős–Szekeres theorem.3

Paul Erdős and George Szekeres observed that if a permutation has no
long increasing subsequence, its elements must in some sense be arranged
in a somewhat decreasing fashion, so it must have a commensurately long
decreasing subsequence. The precise result is as follows.

Theorem 1.2 (Erdős–Szekeres theorem) If � 2 Sn and n > rs for some
integers r, s 2 N, then either L(�) > r or D(�) > s.

Proof We introduce the following variation on the permutation statistics
L(·) and D(·): for each 1  k  n, let Lk(�) denote the maximal length of an
increasing subsequence of � that ends with �(k), and similarly let Dk(�)
denote the maximal length of a decreasing subsequence of � that ends with
�(k).

Now consider the n pairs (Dk(�), Lk(�)), 1  k  n. The key observation
is that they are all distinct. Indeed, for any 1  j < k  n, if �( j) < �(k)
then Lj(�) < Lk(�), since we can take an increasing subsequence of �
that ends with �( j) and has length Lj(�), and append �(k) to it. If, on the
other hand, �( j) > �(k), then similarly we get that Dj(�) < Dk(�), since
any decreasing subsequence that ends with �( j) can be made longer by
appending �( j) to it.
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8 Longest increasing subsequences in random permutations

The conclusion from this observation is that for some 1  k  n, either
Lk(�) > r or Dk(�) > s, since otherwise the n distinct pairs (Dk(�), Lk(�))
would all be in the set {1, 2, . . . , r} ⇥ {1, 2, . . . , s}, in contradiction to the
assumption that n > rs. This proves the theorem. ⇤

It is also interesting to note that the condition n > rs in the theorem
cannot be weakened. Indeed, it is easy to construct a permutation � of
order exactly rs for which L(�) = r and D(�) = s; for example, define
�(si + j) = si � j + s + 1 for 0  i < r, 1  j  s (this permutation
has r “blocks,” each comprising a decreasing s-tuple of numbers, with the
ranges of successive blocks being increasing). In fact, it turns out that the
set of permutations that demonstrate the sharpness of the condition has a
very interesting structure; this topic is explored further in Chapter 3.

1.3 First bounds

From here on and throughout this chapter, �n denotes a uniformly random
permutation of order n, so that in probabilistic notation we can write `n =

EL(�n). We can now use Theorem 1.2 to obtain a lower bound for `n.

Lemma 1.3 For all n � 1 we have

`n �
p

n. (1.2)

Proof Rephrasing Theorem 1.2 slightly, we can say that for each permu-
tation � 2 Sn we have L(�)D(�) � n. Now, `n is defined as the average
value of L(�) over all � 2 Sn. However, by symmetry, clearly it is also the
average value of D(�). By linearity of expectations of random variables,
this is also equal to

`n =
1
n!

X

�2Sn

L(�) + D(�)
2

= E
 

L(�n) + D(�n)
2

!

.

By the inequality of the arithmetic and geometric means, we get that

`n � E
⇣

p

L(�n)D(�n)
⌘

� pn. ⇤

Comparing (1.2) with (1.1), we see that the bound gives the correct order
of magnitude, namely

p
n, for `n, but with a wrong constant. What about
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1.3 First bounds 9

an upper bound? As the following lemma shows, we can also fairly easily
get an upper bound of a constant times

p
n, and thus establish that

p
n is

the correct order of magnitude for `n. This will give us a coarse, but still
interesting, understanding of `n.

Lemma 1.4 As n! 1 we have

lim sup
n!1

`np
n
 e. (1.3)

Proof For each 1  k  n, let Xn,k denote the number of increasing sub-
sequences of the random permutation �n that have length k. Now compute
the expected value of Xn,k, noting that this is equal to the sum, over all
⇣

n
k

⌘

subsequences of length k, of the probability for that subsequence to be
increasing, which is 1/k!. This gives

E(Xn,k) =
1
k!

 

n
k

!

.

This can be used to bound the probability that L(�n) is at least k, by noting
(using (0.2)) that

P(L(�n) � k) = P(Xn,k � 1)  E(Xn,k) =
1
k!

 

n
k

!

=
n(n � 1) . . . (n � k + 1)

(k!)2  nk

(k/e)2k . (1.4)

Fixing some � > 0 and taking k = d(1 + �)epne, we therefore get that

P(L(�n) � k)  nk

(k/e)2k 
 

1
1 + �

!2k


 

1
1 + �

!2(1+�)e
p

n

,

a bound that converges to 0 at a rate exponential in
p

n as n! 1. It follows
(noting the fact that L(�)  n for all � 2 Sn) that

`n = E(L(�n))  P(L(�n) < k)(1 + �)e
p

n + P(L(�n) � k)n

 (1 + �)e
p

n + O(e�c
p

n),

where c is some positive constant that depends on �. This proves the claim,
since � was an arbitrary positive number. ⇤

Note that the proof of Lemma 1.4 actually gave slightly more infor-
mation than what was claimed, establishing the quantity (1 + �)e

p
n as a

bound not just for the average value of L(�n), but also for the typical value,
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10 Longest increasing subsequences in random permutations

namely the value that is attained with a probability close to 1 for large n.
Furthermore, the bounds we derived also yielded the fact (which will be
useful later on) that the probability of large fluctuations of L(�n) from its
typical value decays like an exponential function of

p
n. We record these

observations in the following lemma.

Lemma 1.5 For any ↵ > e we have for all n that

P(L(�n) > ↵
p

n)  Ce�c
p

n

for some constants C, c > 0 that depend on ↵ but not on n.

It is interesting to compare this with the argument that was used to prove
Lemma 1.3, which really only bounds the average value of L(�n) and not
the typical value, since it does not rule out a situation in which (for ex-
ample) approximately half of all permutations might have a value of L(�)
close to 0 and the other half have a value close to 2

p
n. However, as we

shall see in the next section, in fact the behavior of L(�n) for a typical
permutation �n is asymptotically the same as that of its average value.

1.4 Hammersley’s theorem

Our goal in this section is to prove the following result, originally due to
Hammersley [54].

Theorem 1.6 (Hammersley’s convergence theorem for the maximal in-
creasing subsequence length) The limit ⇤ = limn!1 `np

n exists. Further-
more, we have the convergence L(�n)/

p
n! ⇤ in probability as n! 1.

Hammersley’s idea was to reformulate the problem of studying longest
increasing subsequences in permutations in a more geometric way. Denote
by � a partial order on R2 where the relation (x1, y1) � (x2, y2) holds pre-
cisely if x1  x2 and y1  y2. For a set A = ((xk, yk))n

k=1 of n points in
the plane, an increasing subset of A is a subset any two of whose ele-
ments are comparable in the order � (in the context of partially ordered
sets such a subset of A would be called a chain). See Fig. 1.1. Denote by
L(A) the maximal length of an increasing subset of A. Note that this gen-
eralizes the definition of L(�) for a permutation � 2 Sn, since in that case
L(�) = L(G�), where G� = {(i,�(i)) : 1  i  n} is the graph of �.
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