
Cambridge University Press
978-1-107-07541-2 — Learning Scientific Programming with Python
Christian Hill
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1 Introduction

1.1 About this book

This book is intended to help scientists and engineers learn version 3 of the Python

programming language and its associated NumPy, SciPy and Matplotlib libraries. No

prior programming experience or scientific knowledge in any particular field is assumed.

However, familiarity with some mathematical concepts such as trigonometry, complex

numbers and basic calculus is helpful to follow the examples and exercises.

Python is a powerful language with many advanced features and libraries; while the

basic syntax of the language is straightforward to learn, it would be impossible to teach

it in depth in a book of this size. Therefore, we aim for a balanced, broad introduction to

the central features of the language and its important libraries. The text is interspersed

with examples relevant to scientific research, and at the end of most sections there are

questions (short problems designed to test knowledge) and exercises (longer problems

that usually require a short computer program to solve). Although it is not necessary

to complete all of the exercises, readers will find it useful to attempt at least some of

them. Where a section, example or exercise contains more advanced material that may

be skipped on first reading, this is indicated with the symbol ♦.

In Chapter 2 of this book, the basic syntax, data structures and flow control of a

Python program are introduced. Chapter 3 is a short interlude on the use of the Pylab

library for making graphical plots of data: this is useful to visualize the output of

programs in subsequent chapters. Chapter 4 provides more advanced coverage of the

core Python language and a brief introduction to object-oriented programming. There

follows another short chapter introducing the popular IPython and IPython Notebook

environments, before chapters on scientific programming with NumPy, Matplotlib and

SciPy. The final chapter covers more general topics in scientific programming, including

floating point arithmetic, algorithm stability and programming style.

Readers who are already familiar with the Python programming language may wish

to skim Chapters 2 and 4.

Code examples and exercise solutions may be downloaded from the book’s website at

scipython.com . Note that while comments have been included in these downloadable

programs, they are not so extensive in the printed version of this book: instead, the code

is explained in the text itself through numbered annotations (such as ➊). Readers typing

in these programs for themselves may wish to add their own explanatory comments to

the code.

1

www.cambridge.org/9781107075412
www.cambridge.org

Cambridge University Press
978-1-107-07541-2 — Learning Scientific Programming with Python
Christian Hill
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

2 Introduction

1.2 About Python

Python is a powerful, general-purpose programming language devised by Guido van

Rossum in 1989.1 It is classified as a high-level programming language in that it auto-

matically handles the most fundamental operations (such as memory management)

carried out at the processor level (“machine code”). It is considered a higher-level

language than, for example, C, because of its expressive syntax (which is close to

natural language in some cases) and rich variety of native data structures such as lists,

tuples, sets and dictionaries. For example, consider the following Python program which

outputs a list of names on separate lines.

Listing 1.1 Outputing a list of names using a program written in Python

eg1-names.py: output three names to the console.

names = [’Isaac Newton’, ’Marie Curie’, ’Albert Einstein’]

for name in names:

print(name)

Output:

Isaac Newton

Marie Curie

Albert Einstein

Now compare this with the equivalent program in C.

Listing 1.2 Outputing a list of names using a program written in C

/* eg1-names.c: output three names to the console. */

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#define MAX_STRING_LENGTH 20

#define NUMBER_OF_STRINGS 3

int main()

{

int i;

char names[NUMBER_OF_STRINGS][MAX_STRING_LENGTH+1];

strcpy(names[0], "Isaac Newton");

strcpy(names[1], "Marie Curie");

strcpy(names[2], "Albert Einstein");

for (i=0;i<NUMBER_OF_STRINGS;i++) {

fprintf(stdout, "%s\n", names[i]);

}

return EXIT_SUCCESS;

}

1 Python’s “benevolent dictator for life.”

www.cambridge.org/9781107075412
www.cambridge.org

Cambridge University Press
978-1-107-07541-2 — Learning Scientific Programming with Python
Christian Hill
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.2 About Python 3

Even if you are not familiar with the C language, you can see there is quite a lot of

overhead involved in coding even this simple task in C: three includes of libraries not

loaded by default, explicit declarations of variables to hold the list (“array”, in C) of

names, names, and a counter, i, and explicit indexing of this array in a for loop; you

even need to add the line endings (‘\n’ is the “new line” character). This source code

then has to be compiled – converted into the machine code that the computer processor

understands – before it can be run (executed). Furthermore, there is plenty of scope for

errors (bugs): trying to print the name stored in name[10] will likely cause junk to be

output: the C compiler won’t stop you from accessing this nonexistent name.

The same program written in three lines of Python is clean and expressive: we do

not have to explicitly declare that names is a list of strings, there is no need for a

loop counter like i and there are no separate libraries to include (import in Python).

To run the Python program, one simply needs to type python eg1-names.py which

will automatically invoke the Python “interpreter” to compile and then run the resulting

“byte-code” (a kind of intermediate representation of the program between its source

and the ultimate machine code that Python dispatches to the processor).

Python’s syntax aims to ensure that “There should be one – and preferably only one –

obvious way to do it.” This differs from some other popular high-level languages such as

Ruby and Perl, which take the opposite approach, encapsulated by the mantra “there’s

more than one way to do it.” For example, there are (at least) four obvious ways to

output the same list in Perl:2

Listing 1.3 Different ways to output a list of names using a program written in Perl

@names = ("Isaac Newton", "Marie Curie", "Albert Einstein");

Method 1

print "$_\n" for @names;

Method 2

print join "\n", @names;

print "\n";

Method 3

print map { "$_\n" } @names;

Method 4

$" = "\n";

print "@names\n";

(Note also Perl’s famously concise but somewhat opaque syntax.)

1.2.1 Advantages and disadvantages of Python

Here are some of the main advantages of the Python programming language and why

you might want to use it:

2 Well, obvious to Perl programmers.

www.cambridge.org/9781107075412
www.cambridge.org

Cambridge University Press
978-1-107-07541-2 — Learning Scientific Programming with Python
Christian Hill
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

4 Introduction

• Its clean and simple syntax makes writing Python programs fast and generally

minimizes opportunities for bugs to creep in. When done right, the result is high-

quality software that is easy to maintain and extend.

• It’s free – Python and its associated libraries are free of cost and open source,

unlike commercial offerings such as Mathematica.

• Cross-platform support: Python is available for every commonly available

computer system, including Windows, Unix, Linux and Mac OS X. Although

platform-specific extensions exist, it is possible to write code that will run on any

platform without modification.

• Python has a large library of modules and packages that extend its functionality.

Many of these are available as part of the “standard library” provided with the

Python interpreter itself. Others, including the NumPy, SciPy and Matplotlib

libraries used in scientific computing, can be downloaded separately for no cost.

• Python is relatively easy to learn. The syntax and idioms used for basic operations

are applied consistently in more advanced usage of the language. Error messages

are generally meaningful assessments of what went wrong rather than the generic

“crashes” that can occur in compiled lower-level languages such as C.

• Python is flexible: it is often described as a “multi-paradigm” language that

contains the best features from the procedural, object-oriented and functional

programming paradigms. There is little need for the work-arounds required in

some languages when a problem can only be solved cleanly with one of these

approaches.

So where’s the catch? Well, Python does have some disadvantages and isn’t suitable

for every application.

• The speed of execution of a Python program is not as fast as some other, fully

compiled languages such as C and Fortran. For heavily numerical work, the

NumPy and SciPy libraries alleviate this to some extent by using compiled-

C code “under the hood,” but at the expense of some reduced flexibility. For

many, many applications, however, the speed difference is not noticeable and the

reduced speed of execution more than offset by a much faster speed of develop-

ment. That is, it takes much less time to write and debug a Python program than

to do the same in C, C++ or Java.

• It is hard to hide or obfuscate the source code of a Python program to prevent

others from copying or modifying it. However, this doesn’t mean that successful

commercial Python programs don’t exist.

• A common complaint about Python has historically been that its rapid devel-

opment has led to compatibility issues between versions. Certainly there are

important differences between Python 2 and Python 3 (described in the next

section), but the complaint stems from the fact that within the Python 2 series,

there were major improvements and additions to the language that meant that

code written in a later version (say, 2.7) would not run on an earlier version of

Python (e.g., 2.6), although code written for an earlier version of Python will

always run on a later version (within the same branch, 2 or 3). If you use the

www.cambridge.org/9781107075412
www.cambridge.org

Cambridge University Press
978-1-107-07541-2 — Learning Scientific Programming with Python
Christian Hill
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.3 Installing Python 5

latest version of Python (see Section 1.3) you probably won’t run into a problem,

but some operating systems that come with Python are rather conservative and

install by default only an older version.

1.2.2 Python 2 or Python 3?

At the time of writing, Python users have a choice to make: whether to use the older,

more established Python 2 version of the language or the newer Python 3. Although the

differences between the two versions may seem minor, code written in Python 3 will

not run under Python 2 and vice versa: Python 3 is not backward-compatible with its

predecessor. This book teaches Python 3.

The latest major version of Python 2, Python 2.7, will be the last of that branch. Since

its release in 2009, the number of users and extent of library support for Python 3 has

grown to the point that new users would find little benefit in learning Python 2 except

to maintain legacy code.

There are several reasons for major change between versions (breaking your users’

existing code is not something to be undertaken lightly): Python 3 fixes some ugly

quirks and inconsistencies in the language and provides Unicode support for all strings

(eliminating a lot of the confusion that is created in dealing with Unicode and non-

Unicode strings in Python 2). Unicode is an international standard for the representation

of text in most of the writing systems in the world.

It is anticipated that most users of this book will not have trouble converting their own

code between the two versions of Python if necessary. Where important, the differences

are pointed out in the text.

1.3 Installing Python

The official website of Python is www.python.org/, and contains full and easy-to-follow

instructions for downloading Python. However, there are several full distributions which

include the NumPy, SciPy and Matplotlib libraries (the “SciPy stack”) to save you from

having to download and install these yourself:

• Anaconda is available for free (including for commerical use) from http://

continuum.io/downloads. It installs both Python 2 and Python 3, but the default

version can be selected either before downloading as indicated on this web page,

or subsequently using the ‘conda’ command.

• Enthought Canopy is a similar distribution with a free version and various tiers

of paid-for versions including technical support and development software.

In most cases, one of these distributions should be all you need. We provide some

platform-specific notes below.

The source code (and binaries for some platforms) for the NumPy, SciPy, Matplotlib

and IPython packages are available separately at:

www.cambridge.org/9781107075412
www.cambridge.org

Cambridge University Press
978-1-107-07541-2 — Learning Scientific Programming with Python
Christian Hill
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

6 Introduction

• NumPy: http://sourceforge.net/projects/numpy/

• SciPy: http://sourceforge.net/projects/scipy/

• Matplotlib: http://matplotlib.org/downloads.html

• IPython: https://github.com/ipython/ipython/releases

Windows

Windows users have a couple of further options for installing the full SciPy stack:

Python(x,y) (https://code.google.com/p/pythonxy/) and WinPython (http://winpython.

sourceforge.net/). Both are free.

Mac OS X

Mac OS X, being based on Unix, comes with Python, but it is usually an older version

of Python 2. You must not delete or modify this installation (it’s needed by the operating

system), but you can follow the instructions above for obtaining Python 3 and the SciPy

stack. OS X does not have a native package manager (an application for managing

and installing software), but the two popular third-party package managers, Homebrew

(http://brew.sh/) and MacPorts (www.macports.org/), can both supply Python 3 and its

packages if you prefer this option.

Linux

Almost all Linux distributions come with Python 2, but usually not Python 3, so you

will need to install it from the links above: the Anaconda and Canopy distributions

both have versions for Linux. Most Linux distributions come with their own software

package managers (e.g., apt in Debian and rpm for RedHat). These can be used to

install Python 3 and its libraries, though finding the necessary package repositories may

take some research on the Internet. Be careful not to replace or modify your system

installation as other applications may depend on it.

1.4 The command line

Most of the code examples in this book are written as standalone programs which can

be run from the command line (or from within an integrated development environment

(IDE) if you use one: see Section 9.3.2). To access the command line interface (also

known as a console or terminal) on different platforms, follow the instructions below.

• Windows 7 and earlier: Start > All Programs > Command Prompt; alternatively,

type cmd in the Start > Run input box.

• Windows 8: Preview (lower left of screen) > Windows System: All apps; alterna-

tively type ‘cmd’ in the search box pulled down the top-right corner of the screen.

• Mac OS X: Finder > Applications > Utilities > Terminal

• Linux: if you are not using a graphical interface you are already at the command

line; if you are, then locate the Terminal application (distributions vary, but it is

usually found within a System Utilities or System Tools subfolder).

www.cambridge.org/9781107075412
www.cambridge.org

Cambridge University Press
978-1-107-07541-2 — Learning Scientific Programming with Python
Christian Hill
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.4 The command line 7

Commands typed at the command line are interpreted by an application called a shell,

which allows the user to navigate the file system and is able to start other applications.

For example, the command

python myprog.py

instructs the shell to invoke the Python interpreter, sending it the file myprog.py as

the script to execute. Output from the program is then returned to the shell and displayed

in your console.

www.cambridge.org/9781107075412
www.cambridge.org

