Contents

Introduction

1. **Optical plane waves in an unbounded medium**

 1.1 Introduction to optical plane waves

 1.1.1 Plane waves and Maxwell’s equations
 (a) The y-polarized plane wave
 (b) The x-polarized plane wave

 1.1.2 Plane waves in an arbitrary direction

 1.1.3 Evanescent plane waves

 1.1.4 Intensity and power

 1.1.5 Superposition and plane wave modes
 (a) Plane waves with circular polarization
 (b) Interference of coherent plane waves
 (c) Representation by summation of plane waves

 1.1.6 Representation of plane waves as optical rays

 1.2 Mirror reflection of plane waves

 1.2.1 Plane waves polarized perpendicular to the plane of incidence

 1.2.2 Plane waves polarized in the plane of incidence

 1.2.3 Plane waves with arbitrary polarization

 1.2.4 The intensity

 1.2.5 Ray representation of reflection

 1.2.6 Reflection from a spherical mirror

 1.3 Refraction of plane waves

 1.3.1 Plane waves polarized perpendicular to the plane of incidence

 1.3.2 Plane waves polarized in the plane of incidence

 1.3.3 Properties of refracted and transmitted waves
 (a) Transmission and reflection at different incident angles
 (b) Total internal reflection
 (c) Refraction and reflection of arbitrary polarized waves
 (d) Ray representation of refraction

 1.3.4 Refraction and dispersion in prisms
 (a) Plane wave analysis of prisms
Contents

(b) Ray analysis of prisms 24
(c) Thin prism represented as a transparent layer with a varying index 24

1.3.5 Refraction in a lens 25
(a) Ray analysis of a thin lens 25
(b) Thin lens represented as a transparency with varying index 27

1.4 Geometrical relations in image formation 28
1.5 Reflection and transmission at a grating 30
1.6 Pulse propagation of plane waves 31
Chapter summary 32

2 **Superposition of plane waves and applications** 34

2.1 Reflection and anti-reflection coatings 34
2.2 Fabry–Perot resonance 37
 2.2.1 Multiple reflections and Fabry–Perot resonance 37
 2.2.2 Properties of Fabry–Perot resonance 39
 2.2.3 Applications of the Fabry–Perot resonance 41
 (a) The Fabry–Perot scanning interferometer 41
 (b) Measurement of refractive properties of materials 42
 (c) Resonators for filtering and time delay of signals 43
2.3 Reconstruction of propagating waves 43
2.4 Planar waveguide modes viewed as internal reflected plane waves 46
 2.4.1 Plane waves incident from the cladding 46
 2.4.2 Plane waves incident from the substrate 48
 (a) Incident plane waves with $\sin^{-1}(n_i/n_s) < \theta_s < \pi/2$ 48
 (b) Incident plane waves with $0 < \theta_s < \sin^{-1}(n_i/n_s)$ 48
 2.4.3 Plane waves incident within the waveguide: the planar waveguide modes 48
 2.4.4 The hollow dielectric waveguide mode 50
Chapter summary 51

3 **Scalar wave equation and diffraction of optical radiation** 53

3.1 The scalar wave equation 54
3.2 The solution of the scalar wave equation: Kirchhoff’s diffraction integral 55
 3.2.1 Kirchhoff’s integral and the unit impulse response 57
 3.2.2 Fresnel and Fraunhofer diffractions 57
 3.2.3 Applications of diffraction integrals 58
 (a) Far field diffraction pattern of an aperture 58
 (b) Far field radiation intensity pattern of a lens 60
4 Optical resonators and Gaussian beams

4.1 Integral equations for laser cavities

4.2 Modes in confocal cavities

4.2.1 The simplified integral equation for confocal cavities

4.2.2 Analytical solutions of the modes in confocal cavities

4.2.3 Properties of resonant modes in confocal cavities

4.2.4 Radiation fields inside and outside the cavity

4.3 Modes of non-confocal cavities

4.3.1 Formation of a new cavity for known modes of confocal resonator

4.3.2 Finding the virtual equivalent confocal resonator for a given set of reflectors

4.3.3 A formal procedure to find the resonant modes in non-confocal cavities

4.3.4 An example of resonant modes in a non-confocal cavity

4.4 The propagation and transformation of Gaussian beams (the ABCD matrix)

4.4.1 A Gaussian mode as a solution of Maxwell’s equation

4.4.2 The physical meaning of the terms in the Gaussian beam expression

4.4.3 The analysis of Gaussian beam propagation by matrix transformation

4.4.4 Gaussian beam passing through a lens
4.4.5 Gaussian beam passing through a spatial filter 98
4.4.6 Gaussian beam passing through a prism 100
4.4.7 Diffraction of a Gaussian beam by a grating 102
4.4.8 Focusing a Gaussian beam 103
4.4.9 An example of Gaussian mode matching 104
4.4.10 Modes in complex cavities 105
4.4.11 An example of the resonance mode in a ring cavity 106

Chapter summary 107

5 Optical waveguides and fibers 109

5.1 Introduction to optical waveguides and fibers 109
5.2 Electromagnetic analysis of modes in planar optical waveguides 112
5.2.1 The asymmetric planar waveguide 112
5.2.2 Equations for TE and TM modes 112
5.3 TE modes of planar waveguides 113
5.3.1 TE planar guided-wave modes 114
5.3.2 TE planar guided-wave modes in a symmetrical waveguide 115
5.3.3 The cut-off condition of TE planar guided-wave modes 117
5.3.4 An example of TE planar guided-wave modes 118
5.3.5 TE planar substrate modes 119
5.3.6 TE planar air modes 119
5.4 TM modes of planar waveguides 121
5.4.1 TM planar guided-wave modes 121
5.4.2 TM planar guided-wave modes in a symmetrical waveguide 122
5.4.3 The cut-off condition of TM planar guided-wave modes 123
5.4.4 An example of TM planar guided-wave modes 123
5.4.5 TM planar substrate modes 124
5.4.6 TM planar air modes 125
5.4.7 Two practical considerations for TM modes 126
5.5 Guided waves in planar waveguides 126
5.5.1 The orthogonality of modes 126
5.5.2 Guided waves propagating in the \(y-z \) plane 127
5.5.3 Convergent and divergent guided waves 127
5.5.4 Refraction of a planar guided wave 128
5.5.5 Focusing and collimation of planar guided waves 129
 (a) The Luneberg lens 129
 (b) The geodesic lens 129
 (c) The Fresnel diffraction lens 130
5.5.6 Grating diffraction of planar guided waves 131
5.5.7 Excitation of planar guided-wave modes 134
5.5.8 Multi-layer planar waveguides 135
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6</td>
<td>Channel waveguides</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td>5.6.1 The effective index analysis</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td>5.6.2 An example of the effective index method</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>5.6.3 Channel waveguide modes of complex structures</td>
<td>141</td>
</tr>
<tr>
<td>5.7</td>
<td>Guided-wave modes in optical fibers</td>
<td>142</td>
</tr>
<tr>
<td></td>
<td>5.7.1 Guided-wave solutions of Maxwell’s equations</td>
<td>142</td>
</tr>
<tr>
<td></td>
<td>5.7.2 Properties of the modes in fibers</td>
<td>144</td>
</tr>
<tr>
<td></td>
<td>5.7.3 Properties of optical fibers in applications</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>5.7.4 The cladding modes</td>
<td>146</td>
</tr>
<tr>
<td></td>
<td>Chapter summary</td>
<td>146</td>
</tr>
<tr>
<td>6</td>
<td>Guided-wave interactions</td>
<td>148</td>
</tr>
<tr>
<td></td>
<td>6.1 Review of properties of the modes in a waveguide</td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>6.2 Perturbation analysis</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>6.2.1 Derivation of perturbation analysis</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>6.2.2 A simple application of perturbation analysis: perturbation by a nearby dielectric</td>
<td>152</td>
</tr>
<tr>
<td></td>
<td>6.3 Coupled mode analysis</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>6.3.1 Modes of two uncoupled parallel waveguides</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>6.3.2 Modes of two coupled waveguides</td>
<td>154</td>
</tr>
<tr>
<td></td>
<td>6.3.3 An example of coupled mode analysis: the grating reflection filter</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>6.3.4 Another example of coupled mode analysis: the directional coupler</td>
<td>160</td>
</tr>
<tr>
<td></td>
<td>6.4 Super mode analysis</td>
<td>163</td>
</tr>
<tr>
<td></td>
<td>6.5 Super modes of two parallel waveguides</td>
<td>163</td>
</tr>
<tr>
<td></td>
<td>6.5.1 Super modes of two well-separated waveguides</td>
<td>164</td>
</tr>
<tr>
<td></td>
<td>6.5.2 Super modes of two coupled waveguides</td>
<td>164</td>
</tr>
<tr>
<td></td>
<td>6.5.3 Super modes of two coupled identical waveguides</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td>(a) Super modes obtained from the effective index method</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td>(b) Super modes obtained from coupled mode analysis</td>
<td>168</td>
</tr>
<tr>
<td></td>
<td>6.6 Directional coupling of two identical waveguides viewed as super modes</td>
<td>169</td>
</tr>
<tr>
<td></td>
<td>6.7 Super mode analysis of the adiabatic Y-branch and Mach-Zehnder interferometer</td>
<td>170</td>
</tr>
<tr>
<td></td>
<td>6.7.1 The adiabatic horn</td>
<td>170</td>
</tr>
<tr>
<td></td>
<td>6.7.2 Super mode analysis of a symmetric Y-branch</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>(a) A single-mode Y-branch</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>(b) A double-mode Y-branch</td>
<td>173</td>
</tr>
<tr>
<td></td>
<td>6.7.3 Super mode analysis of the Mach–Zehnder interferometer</td>
<td>173</td>
</tr>
<tr>
<td></td>
<td>Chapter summary</td>
<td>175</td>
</tr>
</tbody>
</table>
Table of Contents

7 Passive waveguide devices

7.1 Waveguide and fiber tapers 176
7.2 Power dividers 176
7.2.1 The Y-branch equal-power splitter 177
7.2.2 The directional coupler 177
7.2.3 The multi-mode interference coupler 178
7.2.4 The Star coupler 182
7.3 The phased array channel waveguide frequency demultiplexer 186
7.4 Wavelength filters and resonators 188
7.4.1 Grating filters 188
7.4.2 DBR resonators 189
7.4.3 The ring resonator wavelength filter 189
 (a) Variable-gap directional coupling 190
 (b) The resonance condition of the coupled ring 191
 (c) Power transfer 192
 (d) The free spectral range and the Q-factor 192
7.4.4 The ring resonator delay line 194
Chapter summary 195

8 Active opto-electronic guided-wave components

8.1 The effect of electro-optical χ 197
8.1.1 Electro-optic effects in plane waves 197
8.1.2 Electro-optic effects in waveguides at low frequencies 198
 (a) Effect of $\Delta\chi'$ 198
 (b) Effect of $\Delta\chi''$ 199
8.2 The physical mechanisms to create $\Delta\chi$ 200
8.2.1 $\Delta\chi'$ 200
 (a) The LiNbO$_3$ waveguide 202
 (b) The polymer waveguide 203
 (c) The III–V compound semiconductor waveguide 203
8.2.2 $\Delta\chi''$ in semiconductors 205
 (a) Stimulated absorption and the bandgap 205
 (b) The quantum-confined Stark effect, QCSE 206
8.3 Active opto-electronic devices 211
8.3.1 The phase modulator 211
8.3.2 The Mach–Zhender modulator 212
8.3.3 The directional coupler modulator/switch 213
8.3.4 The electro-absorption modulator 214
8.4 The traveling wave modulator 215
Chapter summary 217

Appendix 219

Index 225