
Introduction

Optics is a very old field of science. It has been taught traditionally as propagation,
imaging, and diffraction of polychromatic natural light, then as interference, diffraction,
and propagation of monochromatic light. Books like Principles of Optics by E. Wolf in
1952 gave a comprehensive and extensive in-depth discussion of properties of
polychromatic and monochromatic light. Topics such as optical waveguide, fiber optics,
optical signal processing, and holograms for laser light have been presented separately in
more recent books. There appears to be no need for any new book in optics. However,
there are several reasons to present optics differently, such as is done in this book.

Many contemporary optics books are concerned with components and instruments
such as lenses, microscopes, interferometers, gratings, etc. Reflection, refraction, and
diffraction of optical radiation are emphasized in these books. Other books are
concerned with the propagation of laser light in devices and systems such as optical
fibers, optical waveguides, and lasers, where they are analyzed more like microwave
devices and systems. The mathematical techniques used in the two approaches are very
different. In one case, diffraction integrals and their analysis are important. In the other
case, modal analysis is important. Students usually learn optical analysis in two separate
ways and then reconcile, if they can, the similarities and differences between them.
Practicing engineers are also not fully aware of the interplay of these two different
approaches. These difficulties can be resolved if optical analyses are presented from the
beginning as solutions of Maxwell’s equations and then applied to various applications
using different techniques, such as diffraction or modal analysis.

The major difficulty to present optics from the solutions of Maxwell’s equations is the
complexity of the mathematics. Complex mathematical analyses often obscure the basic
differences and similarities of the mathematical techniques and mask the understanding
of basic concepts.

Optical device configurations vary from simple mirrors to complex waveguide
devices. How to solve Maxwell’s equations depends very much on the configuration
of the components to be analyzed. The more complex the configuration, the more
difficult the solution. Optics is presented in this book in the order of the complexity of
the configuration in which the analysis is carried out. In this manner, the reasons for
using different analytical techniques can be easily understood, and basic principles are
not masked by any unnecessary mathematical complexity.

Optics in unbounded media is first presented in this book in the form of plane wave
analysis. A plane wave is the simplest solution of Maxwell’s equations. Propagation,
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refraction, diffraction, and focusing of optical radiation, even optical resonators and
planar waveguides, can be analyzed and understood by plane wave analysis. It leads
directly to ray optics, which is the basis of traditional optics. It provides a clear
demonstration and understanding of optics without considering boundary condition or
device configuration. Even sophisticated concepts such as modal expansion can also be
introduced using plane waves. Plane wave analysis is the focus of the first two chapters.

Realistically, wave propagation in bulk optical components involves a finite boundary
such as a lens that has a finite aperture. Plane wave analysis can no longer be used in this
configuration. However, in these situations, the waves are still transverse electric and
magnetic (TEM). Therefore, TEM waves are rigorously analyzed using Maxwell’s
equations in Chapter 3. The diffraction analysis presented in Chapter 3 is identical to
traditional optical analysis. Since applications of diffraction analysis are already covered
extensively in existing optics books, only a few basic applications of diffraction theory
are presented here. The distinct features of our presentation here are: (1) Both the TEM
assumption of the Kirchoff’s integral analysis and the relation between diffraction
theory and Maxwell’s equations are clearly presented. (2) Modern engineering concepts
such as convolution, unit impulse response, and spatial filtering are introduced.

Diffraction integrals are again used to analyze laser cavities in the first part of
Chapter 4, for three reasons: (1) Laser modes are used in many applications. (2) The
diffraction analysis leads directly to the concept of modes. It is instructive to recognize
that they are inter-related. (3) An important consequence of laser cavity analysis is that
laser modes are Gaussian. A Gaussian mode retains its functional form not only inside,
but also outside of the cavity.

The second part of Chapter 4 is focused on Gaussian beams and how different
applications can be analyzed using Gaussian beams. Gaussian modes are also natural
solutions of theMaxwell’s equations. It constitutes a complete set. Just like any other set
of modes, such as plane waves, any radiation can be represented as summation of
Gaussian modes. When the diffraction integral is used in Chapter 3 to analyze waves
propagating through components with finite apertures, the diffraction loss needs to be
calculated by the Kirchoff’s integral for each aperture. In comparison, the diffraction
loss of a Gaussian beam propagating through an aperture can be calculated without any
integration. Therefore, a Gaussian beam is used to represent TEM waves in many
engineering applications.

Although TEMmodes exist in solid-state and gas laser cavities, waves propagating in
waveguides and fibers are no longer transverse electric and magnetic. Microwave-like
modal analysis needs to be used to analyze optical devices that have dimensions of the
order of optical wavelength.

Optical waveguides and fibers are dielectric devices. They are different from
microwave devices. Microwave waveguides have closed metallic boundaries. The
mathematical complexity of finding microwave waveguide modes is much simpler
than that of optical waveguides.

The distinct features in the analysis of dielectric waveguides are: (1) There are
analytical solutions for very few basic device configurations because of the complex
boundary conditions. Analyses of practical devices need to be carried out by
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approximation techniques. (2) There is a continuous set of radiation modes in addition to
the discrete guided-wave modes. Any abrupt discontinuity will excite radiation modes.
(3) The evanescent tail of the guided-wave modes not only reduces propagation loss, but
also provides access to excite the modes by coupling through evanescent fields.
(4) Multiple modes are often excited in devices. The performance of the device depends
on what modes have been excited.

Because of the complexity of modal analysis of optical waveguides and fibers, it is
presented here in four parts.

In the first part, modes of simple waveguides and fibers are discussed in Chapter 5.
Analytical solutions for planar waveguides and step–index fiber are presented. Although
these are not realistic devices, they are the only solutions that can be obtained from
Maxwell’s equations. Modes of these simple basic devices are very useful for
demonstrating various properties of the guided waves. Approximation methods are
then presented to discuss modes of realistic devices. For example, the effective index
method is used here to analyze channel waveguides.

Guided-wave devices operate by mutual interactions among modes. These
interactions need to be analyzed in the absence of exact solutions. Therefore, several
approximation methods, the perturbation technique, the coupled mode analysis, and the
super mode analysis, are presented in Chapter 6. The differences and similarities of the
three methods are compared and explained. Examples in applications are used to
demonstrate these techniques.

In the third and fourth parts, modal analyses of passive and active guided-wave
devices are presented. Passive guided-wave devices function mainly as power dividers,
wavelength filters, resonators, and wavelength multiplexers. In each of these system
functions, there are several different devices that could be used. Thus, devices
that perform the same system function are discussed and analyzed together. Their
performance is compared.

Active devices utilize electro-optical effects of the electrical signals to operate.
Discussion of active guided-wave devices is complex because there are different
physical mechanisms involved. How these mechanisms work is reviewed.The electrical
performance, as well as the optical performance of these devices are analyzed.

In summary, when optics are presented as solutions of Maxwell’s equations, the
inter-relation between plane wave, diffraction, and modal analysis becomes clear. For
example, the use of modal analysis is not limited to waveguides and fibers. There can be
modes and modal expansion in plane wave analysis, as well as in diffraction optics. As
we learn optics step by step in the order of the mathematical complexity and device
configuration, we learn optical analysis from various perspectives.
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1 Optical plane waves in an
unbounded medium

Engineers involved in design and the use of optical and opto-electronic systems are often
required to analyze theoretically the propagation and the interaction of optical waves
using different methods. Sometimes it is diffraction analysis; on other occasions, modal
analysis. They are all solutions of Maxwell’s equations, yet they appear to be very
different. All optical analyses should be presented as solutions of Maxwell’s equations so
that the inter-relations between different analytical techniques are clear. In order to
avoid unnecessary mathematical complexity, the simplest analysis should be presented
first. In this book, optics will be presented first by plane wave analysis, followed by
diffraction and modal analyses, in increasing order of complexity.

Plane waves are the simplest form of optical waves that can be derived rigorously from
Maxwell’s equations. Plane wave analysis can be used to derive ray analysis, which is the
basis of traditional optics. It can be applied directly to analyze many optical phenomena
such as refraction, reflection, dispersion, etc. It can also be used to demonstrate sophis-
ticated concepts such as superposition, interference, resonance, guided waves, and
Fourier optics. Plane wave analyses will be the focus of discussion in Chapters 1 and 2.

However, plane wave analysis cannot be used to analyze diffraction, laser modes,
optical signal processing, and propagation in small optical components such as fibers
and waveguides, etc. These analyses will be the focus of discussion in subsequent chapters.

1.1 Introduction to optical plane waves

Plane wave analysis is presented here in full detail, so that the mathematical derivations
and details can be fully exhibited and the physical significances of these analyses are
fully explained.

1.1.1 Plane waves and Maxwell’s equations

All optical waves are solutions of the Maxwell’s equations (assuming there are no free
carriers),

∇� E ¼ �∂B
∂t

; ∇� H ¼ ∂D
∂t

ð1:1Þ
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Here E is the electric field vector, H is the magnetic field vector, D is the displacement
vector, and B is the magnetic induction vector. For isotropic media,

B ¼ μH ; D ¼ εE ð1:2Þ
Let ix , iy , and iz , be unit vectors in the x, y, and z directions of an x-y-z rectangular
coordinate system. Then E, H and the position vector r can be written as

E ¼ Exix þ Eyiy þ Eziz  H ¼ Hxix þ Hyiy þ Hziz ð1:3aÞ

r ¼ xix þ yiy þ ziz ð1:3bÞ

A special solution of Eqs. (1.1) and (1.2) is a plane wave that has no amplitude
variation transverse to its direction of propagation. If we designate the z direction as the
direction of propagation, this means that

∂
∂x

¼ 0 and 
∂
∂y

¼ 0 ð1:4Þ

Substituting ∂/∂x = 0 and δ/δy = 0 into the ∇ × E and ∇ × H equations leads to two
distinct groups of equations:

∂Ey

∂z
¼ μ ∂Hx=∂t;  

∂Hx

∂ z
¼ ε∂Ey=∂t; or 

∂Ey
2

∂z2
¼ με

∂2

∂t2
Ey ð1:5aÞ

and

∂Hy

∂ z
¼ � ε∂Ex=∂ t; 

∂Ex

∂z
¼ � μ∂Hy=∂ t; or 

∂Hy
2

∂z2
¼ με

∂2

∂t2
Hy ð1:5bÞ

Clearly, these are two separate independent sets of equations. Ey and Hx are related only
to each other, and Hy and Ex are related only to each other. Solutions of Eq. (1.5a) are
plane waves with y polarization of the electric field (or x polarization in magnetic field).
Solutions of Eq. (1.5b) are plane waves with x polarization in the electric field E (or y
polarization in magnetic field H).

(a) The y-polarized plane wave
For a cw optical plane wave with a single angular frequency ω that has a time variation,
ejωt, and for lossless media (i.e. the medium has a real value of ε), there is a well-known
solution of Eq. (1.5a) in the complex notation. It is

Ey ¼ Ef
ye

�jβzejωt; Hx ¼ Hf
x e

�jβzejωt; Hf
x ¼ �

ffiffiffi
ε
μ

r
Ef
y ; ð1:6aÞ

where β ¼ ω
ffiffiffiffiffi
με

p
. The real time domain expression for the complex Ey shown in (1.6a)

is Ef
y

��� ���cos βz� ωt þ φð Þ where φ is the phase of Ef
y

��� ���at z = 0 and t = 0. The angular

frequency ω is related to the optical frequency f by ω ¼ 2πf . This wave is known
as a y-polarized forward propagating wave in the +z direction. The phase of

1.1 Introduction to optical plane waves 5

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-07490-3 - Principles of Optics for Engineers: Diffraction and Modal Analysis
By William S. C. Chang
Excerpt
More information

http://www.cambridge.org/9781107074903
http://www.cambridge.org
http://www.cambridge.org


Ey, i.e. βz� ωt ¼ β z� vpt
� �

, is a constant when z ¼ vpt. Thus vp is known as the phase

velocity of the plane wave.
If the medium in which the plane wave propagates is free space, then ε ¼ εo and the

free space phase velocity is co ¼ 1=
ffiffiffiffiffiffiffi
μεo

p
≡3� 108 m s�1. In free space, the optical wave

length for a frequency f is λo, where f λo ¼ co. If the medium is a lossless dielectric

material with a permittivity ε, then its index of refraction is n ¼ ffiffiffiffiffiffiffiffiffi
ε=εo

p
,

β ¼ nβo ¼ nω
ffiffiffiffiffiffiffi
μεo

p
. If ε is a function of wavelength, the medium is said to be dispersive.

There is also a second solution for the same polarization of the electric field,

Ey ¼ Eb
ye

jβzejωt; Hx ¼ Hb
x e

jβzejωt; Hb
x ¼

ffiffiffi
ε
μ

r
Eb
y ð1:6bÞ

This solution is a backward propagating wave because the phase of Ey, i.e.
βzþ ωt ¼ β zþ vpt

� �
, at any time t is a constant when z ¼ �vpt and vp ¼ ω=β.

If the permittivity has a loss component, ε ¼ εr � jεσ, then

β ¼ ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ εr � jεσð Þ

p
¼ βr � jβσ ð1:7Þ

The phase velocity of light is now vp ¼ c ¼ ω=βr. The amplitude of the plane wave
decays as e�βσz′for forward waves and eþjβσz′for backward waves. In comparison with the
phase velocity of free space, the ratio of the phase velocities, co/c, is the effective
refractive index of the plane wave, n ¼ coβr=ω ¼ co=c. The wavelength in the medium
is λ ¼ λo=n. In addition to β, or phase velocity, the loss of optical waves in the medium is
an important consideration in applications.

(b) The x-polarized plane wave
A similar solution exists for the x-polarized electric field and Hy. For the forward wave,

Hy ¼ Hf
y e

�jβzejωt; Ex ¼ Ef
xe

�jβzejωt; Ef
x ¼

ffiffiffi
μ
ε

r
Hf

y ð1:8aÞ

For the backward wave,

Hy ¼ Hb
y e

þjβzejωt; Ex ¼ Eb
xe

jβzejωt; Eb
x ¼ �

ffiffiffi
μ
ε

r
Hb

y ð1:8bÞ

In summary, both equations (1.5a) and (1.5b) are second-order differential equations.
Mathematically, each of them has two independent solutions, which are the forward and
the backward propagating waves. However, Eqs. (1.5a) and (1.5b) are also two separate
set of equations. The solution for Eq. (1.5a) describes a plane wave polarized in the y
direction. The solution of Eq. (1.5b) describes a plane wave polarized in the x direction.
Both waves have the same direction of propagation. β is usually designated as a
propagation vector along the direction of propagation z that has magnitude β,

β ¼ βiz ; z ¼ ziz ; βz ¼ β • z ð1:9Þ
The forward wave has +β, the backward wave has –β.
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It is important to note that, along any direction of propagation, there are always plane
waves with two orthogonal polarizations. In each polarization, there are always two
solutions, the forward wave and the backward wave. The propagation constant β and
phase velocity will depend on the medium and the frequency.

1.1.2 Plane waves in an arbitrary direction

Frequently, plane waves in other directions of propagation need to be expressed math-
ematically for analysis. As an example, let there be another xʹ-yʹ-zʹ rectangular coordi-
nate which is related to the x-y-z coordinate by

ix′ ¼ ix ; iy′ ¼ cos θiy � cos
π
2
� θ

� �
iz ; iz′ ¼ cos

π
2
� θ

� �
iy þ cos θiz ð1:10Þ

The x-y-z and the xʹ-yʹ-zʹ coordinates are illustrated in Figure 1.1. The xʹ-yʹ-zʹ coordinate
is just the x-y-z coordinate rotated by angle θ about the x axis. The x and xʹ axes are the
same.

Let there be a plane wave propagating along the zʹ direction. The solutions for
the yʹ and xʹ polarized plane waves have already been given in Eqs. (1.6) and
(1.8). However, these solutions could also be expressed in the x, y, and z coordi-
nates, where

βz′ ¼ β • z′ ¼ β cos θzþ β cos
π
2
� θ

� �
y ð1:11Þ

β ¼ βiz′ ¼ β cos θiz þ β cos
π
2
� θ

� �
iy ð1:12Þ

e�jβz′ ¼ e�jβ • z′ ¼ e�jβ • r ð1:13Þ
For the yʹ polarized plane wave propagating in the +zʹ direction,

y

x

z

y’

x’

z’

θ

θ

Figure 1.1 Illustration of x-y-z and xʹ-yʹ-zʹ coordinates.
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Ey′ ¼ Ef
y0
iy′e

�jβ • z′ejωt ¼ Ef
y0
e�jβ • rejωt

¼ Ef
y0
cos θiy � Ef

y0
sin θiz

� �
e�jβ • rejωt ð1:14Þ

Hx ¼ Hx′ ¼ �
ffiffiffi
ε
μ

r
Ef
y0
e�jβ • rejωtix ð1:15Þ

For the yʹ polarized backward plane wave propagating in the –zʹ direction,

Ey′ ¼ Eb
y0 e

þjβ • rejωtiy′ ; Hb
x0 ¼

ffiffiffi
ε
μ

r
Eb
y0 e

þjβ • rejωtix′ ð1:16Þ

For the xʹ polarized plane wave propagating in the +zʹ direction,

Ex′ ¼ Ex ¼ Ef
x0
e�jβ • rejωtix′ ð1:17Þ

Hy′ ¼
ffiffiffi
ε
μ

r
Ef
x0
e�jβ • rejωtiy′ ¼

ffiffiffi
ε
μ

r
Ef
x0

cos θiy � sin θiz
� �

e�jβ • re�jωt ð1:18Þ

For the xʹ polarized backward wave plane wave propagating in the –zʹ direction,

Ex′ ¼ Ex ¼ Eb
x0 e

þjβ • rejωtix0 ð1:19Þ

Hy′ ¼ �
ffiffiffi
ε
μ

r
Eb
x0 e

þjβ • rejωtiy′ ð1:20Þ

The preceding example can be generalized for any orientation of the xʹ, yʹ,
and zʹ coordinates with respect to the x, y, and z coordinates. Any plane wave
propagating in the zʹ direction can have two mutually perpendicular polarizations,
ia and ib . iz′ , ia and ib are mutually perpendicular to each other, i.e.

ia • ib ¼ ia • β ¼ ib • β ¼ 0.

Let ia ¼ ix′ and ib ¼ iy′ ð1:21Þ

Then the general solutions for the case of ia polarization are:

Ef
a ¼ Ef

ae
�jβ • r′ejωtix′ Hf

a ¼
ffiffiffi
ε
μ

r
Ef
ae

�jβ • r′ejωtiy′ ð1:22Þ

Eb
a ¼ Eb

ae
þjβ • r′ejωt ix′ Hb

a ¼ �
ffiffiffi
ε
μ

r
Eb
ae

þjβ • r′ejωtiy′ ð1:23Þ

β ¼ βx′ix′ þ βy′iy′ þ βz′iz′  β2 ¼ βx′
2 þ βy′

2 þ βz′
2 ð1:24Þ

Here, β makes angles θxʹ, θyʹ, and θzʹ with respect to the xʹ, yʹ, and zʹ axes, with
βx′=β ¼ cos θx′; βy′=β ¼ cos θy′; and βz′=β ¼ cos θz′ . The general solutions for the case
of ib polarization are:
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Ef
b ¼ Ef

be
�jβ • r′ejωtiy′ Hf

a ¼ �
ffiffiffi
ε
μ

r
Ef
be

�jβ • r′ejωtix′ ð1:25Þ

Eb
b ¼ Eb

ae
þjβ • r′ejωtiy′ Hb

a ¼
ffiffiffi
ε
μ

r
Eb
ae

þjβ • r′ejωtix′ ð1:26Þ

It is important to recognize that when there is a wave solution containing various
terms, any term that has the form shown in Eqs. (1.17) to (1.26) represents a plane wave
propagating in the direction of β.

1.1.3 Evanescent plane waves

Eqs. (1.22) to (1.26) described propagating plane waves that have real βxʹ, βyʹ, and βzʹ
values. The maximum real βxʹ and βyʹ values of propagating plane waves are limited toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

βx′2 þ βy′2
q

< ω
ffiffiffiffiffi
με

p
, i.e. 0 < θxʹ, θyʹ, and θzʹ < π/2. Nevertheless, Maxwell’s equation is

still satisfied even if
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2x þ β2y0

q
is larger than β. In that case Eq. (1.24) can only be

satisfied if βzʹ is imaginary. When βzʹ is imaginary, the zʹ variation is a real decaying or

growing exponential function, e�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βx′2þβy′2�β2

p
z′ . In any passive medium, the plane wave

cannot grow without energy input. Thus the solution must decay exponentially in the zʹ
direction. Any solution with imaginary βzʹ is called an evanescent wave. Such solutions
do not propagate in the z direction. They do not have a phase velocity. Evanescent
waves are excited usually in the vicinity of a boundary with an incident wave applied
across the boundary. It is only a near field, meaning that it is negligible at locations far
away from the boundary.1 It is interesting to note that when βxʹ = β, βyʹ = βzʹ = 0, it is no
longer a plane wave propagating in the zʹ direction. It is a plane wave propagating in
the +xʹ direction.

1.1.4 Intensity and power

In optics, only time-averaged power can be detected directly by means of detectors
or by recording media such as film. The time-averaged power per unit area is known
commonly as the intensity. In comparison with rf and microwaves, intensity analysis
plays a much more important role in optics. From text books on electromagnetic
theory, it is well known that the total time-averaged power in the direction of
propagation is [1]

Pav ¼ 1

2
Re
ð
S

E � H� • iz′ds ¼
ð
S

I • iz′ds;  I ¼ 1

2
Re½E � H � ð1:27Þ

1 It is important to note that although the mathematical solution of a plane wave exists for βx or βy values larger
thanω

ffiffiffiffiffi
με

p
, such a solution is important only if those plane waves are excited in specific applications such as

total internal reflection. Otherwise, the solutions have no practical significance.
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The integration is carried out over the entire surface of the plane wave, S.
The * designates the complex conjugate of the variable. Re designates the real part
of the complex quantity. Therefore the time-averaged power per unit area in the
direction of propagation zʹ in either polarization is

Iz′ ¼ 1

2
ReEaHa

� ¼ 1

2

ffiffiffi
ε
μ

r
EaEa

�  or  Iz′ ¼ 1

2
ReEbHb

� ¼ 1

2

ffiffiffi
ε
μ

r
EbEb

� ð1:28Þ

Note that although the total I is the sum of the Is in each polarization, the total
I carries no information about polarization breakdown. Although the complex amplitude
of the plane wave has a phase, its intensity I has no phase information. For plane waves
in a lossless medium, i.e. εσ= 0, its intensity I is a constant. In media with loss, the decay

of the time-averaged power is e�2βσz′ for a forward wave and eþ2βσz′for a backward wave.
In microwaves, I is known as the Poynting vector. In x-y-z coordinates, the intensity

along the z direction is ½ReExHy
�, the intensity along the y direction is ½Re EzHx

�, and
the intensity along the x direction is ½ReEyHz

�.

1.1.5 Superposition and plane wave modes

Plane waves in different direction of propagation (or plane wave modes) can be super-
imposed simultaneously. This is known as the superposition theory in linear media.
Many interesting optical phenomena can be understood by superposition of plane waves.
Three examples are presented here to illustrate the effects of superposition. They are
important concepts in many applications.

(a) Plane waves with circular polarization
Let us consider superposition of two plane waves of equal magnitude, polarized in x and
y, with a π/2 phase difference.

E ¼ Eo ix þ jiy
� �

ð1:29Þ

The real time domain form of this wave is

E ¼ Eo cosðβz� ωt þ φÞix þ sinðβz� ωt þ φÞiy
h i

ð1:30Þ

So that, at any time t, the polarization rotates at different z positions. This type of wave is
known as a circular polarized optical wave because the polarization of E rotates as it
propagates. When these two waves have unequal amplitudes they give rise to an
elliptical polarized plane wave.

(b) Interference of coherent plane waves
Let us consider two plane waves of equal amplitude at the same ω and y polarization.
They propagate at different directions of propagation β in the x–z plane. Their βs lie in
the x–z plane and make angles, θ and ζ, with respect to the z axis. Mathematically, the
waves are
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