Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>page xi</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>xiv</td>
</tr>
<tr>
<td>1 Introduction</td>
<td></td>
</tr>
<tr>
<td>1.1 What is reproducibility?</td>
<td>1</td>
</tr>
<tr>
<td>1.2 The psychology of scientific discovery</td>
<td>3</td>
</tr>
<tr>
<td>1.2.1 Seeing patterns in randomness</td>
<td>4</td>
</tr>
<tr>
<td>1.2.2 Not wanting to miss anything</td>
<td>5</td>
</tr>
<tr>
<td>1.2.3 Psychological cliff at $p = 0.05$</td>
<td>6</td>
</tr>
<tr>
<td>1.2.4 Neglect of sampling variability</td>
<td>8</td>
</tr>
<tr>
<td>1.2.5 Independence bias</td>
<td>12</td>
</tr>
<tr>
<td>1.2.6 Confirmation bias</td>
<td>15</td>
</tr>
<tr>
<td>1.2.7 Expectancy effects</td>
<td>17</td>
</tr>
<tr>
<td>1.2.8 Hindsight bias</td>
<td>17</td>
</tr>
<tr>
<td>1.2.9 Herding effect</td>
<td>18</td>
</tr>
<tr>
<td>1.2.10 How the biases combine</td>
<td>19</td>
</tr>
<tr>
<td>1.3 Are most published results wrong?</td>
<td>21</td>
</tr>
<tr>
<td>1.3.1 What statisticians say</td>
<td>22</td>
</tr>
<tr>
<td>1.3.2 What scientists say</td>
<td>24</td>
</tr>
<tr>
<td>1.3.3 Empirical evidence I: questionable research practices</td>
<td>25</td>
</tr>
<tr>
<td>1.3.4 Empirical evidence II: quality of studies</td>
<td>26</td>
</tr>
<tr>
<td>1.3.5 Empirical evidence III: reproducibility of studies</td>
<td>28</td>
</tr>
<tr>
<td>1.3.6 Empirical evidence IV: publication bias</td>
<td>29</td>
</tr>
<tr>
<td>1.3.7 Scientific culture not conducive to ‘truth-finding’</td>
<td>30</td>
</tr>
<tr>
<td>1.3.8 Low prior probability of true effects</td>
<td>32</td>
</tr>
<tr>
<td>1.3.9 Main statistical sources of bias in experimental biology</td>
<td>34</td>
</tr>
<tr>
<td>1.4 Frequentist statistical inference</td>
<td>37</td>
</tr>
<tr>
<td>1.5 Which statistics software to use?</td>
<td>44</td>
</tr>
<tr>
<td>Further reading</td>
<td>46</td>
</tr>
<tr>
<td>2 Key Ideas in Experimental Design</td>
<td>48</td>
</tr>
<tr>
<td>2.1 Learning versus confirming experiments</td>
<td>49</td>
</tr>
<tr>
<td>2.2 The fundamental experimental design equation</td>
<td>52</td>
</tr>
<tr>
<td>2.3 Randomisation</td>
<td>59</td>
</tr>
<tr>
<td>2.4 Blocking</td>
<td>60</td>
</tr>
<tr>
<td>2.5 Blinding</td>
<td>62</td>
</tr>
</tbody>
</table>
Table of Contents

2.6 Effect type: fixed versus random
- Page 65

2.7 Factor arrangement: crossed versus nested
- Page 66

2.8 Interactions between variables
- Page 68

2.9 Sampling
- Page 72

2.10 Use of controls
- Page 74

2.11 Front-aligned versus end-aligned designs
- Page 76

2.12 Heterogeneity and confounding
- Page 78
 - 2.12.1 Batches
- Page 82
 - 2.12.2 Plates, arrays, chips, and gels
- Page 84
 - 2.12.3 Cages, pens, and tanks
- Page 84
 - 2.12.4 Subject/sample characteristics
- Page 85
 - 2.12.5 Litters
- Page 85
 - 2.12.6 Experimenter characteristics
- Page 86
 - 2.12.7 Time effects
- Page 86
 - 2.12.8 Spatial effects
- Page 89
 - 2.12.9 Useful confounding
- Page 91

Further reading
- Page 93

3 Replication (what is ‘N’?)
- Page 94
 - 3.1 Biological units
- Page 95
 - 3.2 Experimental units
- Page 96
 - 3.3 Observational units
- Page 99
 - 3.4 Relationship between units
 - 3.4.1 Randomisation at the top of the hierarchy
 - Page 103
 - 3.4.2 Randomisation at the bottom of the hierarchy
 - Page 109
 - 3.4.3 Randomisation at multiple levels
 - Page 118
 - 3.5 How is the experimental unit defined in other disciplines?
 - Page 121

4 Analysis of Common Designs
- Page 123
 - 4.1 Preliminary concepts
 - 4.1.1 Partitioning the sum of squares
 - Page 124
 - 4.1.2 Counting degrees of freedom
 - Page 132
 - 4.1.3 Multiple comparisons
 - Page 135
 - 4.2 Background to the designs
 - Page 144
 - 4.3 Completely randomised designs
 - 4.3.1 One factor, two groups
 - Page 144
 - 4.3.2 One factor, multiple groups
 - Page 145
 - 4.3.3 Two factors, crossed
 - Page 149
 - 4.3.4 One factor with subsamples (pseudoreplication)
 - Page 157
 - 4.3.5 One factor with a covariate
 - Page 166
 - 4.4 Randomised block designs
 - 4.4.1 With no replication
 - Page 170
 - 4.4.2 With genuine replication
 - Page 173
 - 4.4.3 With pseudoreplication
 - Page 175
Table of Contents

4.5 Split-unit designs 175
4.6 Repeated measures designs 181
Further reading 191

5 Planning for Success 192
5.1 Choosing a good outcome variable 192
5.1.1 Qualitative criteria 193
5.1.2 Statistical criteria 194
5.2 Power analysis and sample size calculations 206
5.2.1 Calculating the sample size 207
5.2.2 Calculating power 210
5.2.3 Calculating the minimum detectable effect 210
5.2.4 Power curves 211
5.2.5 Simulation-based power analysis 212
5.3 Optimal experimental designs (rules of thumb) 220
5.3.1 Use equal \(n \) with two groups 223
5.3.2 Use more controls when comparing multiple groups to the control 225
5.3.3 Use fewer factor levels 227
5.3.4 Increase the variance of predictor variables 229
5.3.5 Ensure predictor variables are uncorrelated 235
5.3.6 Space observations out temporally and spatially 238
5.3.7 Sample more intensively where change is faster 240
5.3.8 Make use of blocking and covariates 245
5.3.9 Crossed factors are better than nested 251
5.3.10 Add more samples instead of subsamples 252
5.3.11 Have 10 to 20 samples to estimate the error variance 253
5.4 When to stop collecting data? 256
5.5 Putting it all together 259
5.6 How to get lucky 266
5.7 The statistical analysis plan 267
5.7.1 Why bother? 267
5.7.2 What to include in the SAP 269
Further reading 271

6 Exploratory Data Analysis 272
6.1 Quality control checks 273
6.1.1 Data layout 274
6.1.2 Possible and plausible values 276
6.1.3 Uniqueness 281
6.1.4 Missing values 289
6.1.5 Factor arrangement 294
6.2 Preprocessing 296
6.2.1 Aggregating and summarising 296
6.2.2 Normalising and standardising 297
Table of Contents

6.2.3 Correcting and adjusting 297

6.2.4 Transforming 297

6.2.5 Filtering 298

6.2.6 Combining 300

6.2.7 Pitfalls of preprocessing 300

6.3 Understanding the structure of the data 307

6.3.1 Shapes of distributions 307

6.3.2 Effects of interest 313

6.3.3 Spatial artefacts 326

6.3.4 Individual profiles 335

Further reading 340

Appendix A Introduction to R 341

A.1 Installing R 341

A.2 Writing and editing code 342

A.3 Basic commands 343

A.4 Obtaining help 346

A.5 Setting options 347

A.6 Loading and saving data 347

A.7 Objects, classes, and special values 349

A.8 Conditional evaluation 353

A.9 Creating functions 355

A.10 Subsetting and indexing 357

A.11 Looping and applying 361

A.12 Graphing data 364

A.13 Distributions 371

A.14 Fitting models 375

Appendix B Glossary 381

References 390

Index 411