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Independent Electrons and Static Crystals

The expression “condensed matter” refers to materials that are either in a solid

or in a liquid state. Soon after the atomic theory was established, the structure

of matter in these condensed forms became the object of study under that new

perspective. These early investigations already revealed that a large amount of the

solids, interestingly, exhibit a peculiar structure, which is called a crystal. These

rich forms of matter surprisingly assemble their constituent atoms or molecules in

such a way that the most stable configuration has a periodic character, namely, there

exists a basic unit that repeats itself along the whole sample. The specific geometric

form of the periodic crystalline structure is determined by the spatial orientation of

the atomic or molecular valence orbitals of the basic components of each crystal

material. The existence of this periodic geometric array exerts a profound influence

upon the physical properties of the material. These include the energy spectrum,

charge and heat transport, specific heat, magnetic and optical properties. The study

of crystal lattices, consequently, is of fundamental importance in the physics of

condensed matter.

1.1 Crystal Lattices

The mathematical concept that most closely describes an actual crystal lattice is

that of a Bravais lattice, a set of mathematical points corresponding to the discrete

positions in space given by

{R| R = n1a1 + n2a2 + n3a3; ni ∈ Z}, (1.1)

where ai , i = 1, 2, 3 are the so-called primitive vectors in three-dimensional space.

The corresponding structure in one(two)-dimensional space would be analogous to

(1.1), but having only one(two) primitive vector(s). We can see that the points in

the Bravais lattice form a pattern that repeats itself periodically. A characteristic

feature of this type of mathematical structure is that it looks exactly the same from

the perspective of any of its points R.
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4 Independent Electrons and Static Crystals

The Bravais lattice is invariant under the operation

R → R + T, (1.2)

where

T = La1 + Ma2 + Na3, (1.3)

and L , M, N are arbitrary but fixed integers. Indeed, clearly for any T we have

{R} ≡ {R + T}, hence translations by T are symmetry operations of the Bravais

lattice. Examples of two-dimensional Bravais lattices are the square lattice and the

triangular lattice, see Figs. 1.1 and 1.2.

A useful concept related to a Bravais lattice is that of a primitive unit cell.

This is a region of space containing a single point of the Bravais lattice that

will cover the whole volume (area in two dimensions, length in one dimension)

encompassed by the lattice when translated by all the symmetry operations T, in

such a way that these translations do not produce any superpositions. There are

in general different regions, with many possible shapes, that satisfy the previous

definition. Surprisingly, however, the volume (area in two dimensions, length in

one dimension) of all primitive unit cells is always the same, irrespective of their

Figure 1.1 Square Lattice: an example of a 2d Bravais lattice

Figure 1.2 Triangular Lattice: an example of a 2d Bravais lattice
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1.1 Crystal Lattices 5

Figure 1.3 Two choices of primitive unit cells for a square lattice, corresponding
to different sets of primitive vectors, according to (1.4). Notice that the areas of
the two unit cells are, evidently, the same.

specific shape. Evidently, from the definition, the volume V0 of any primitive unit

cell, for a lattice containing N points and a volume V , must be given by V0 = V
N

.

The mentioned property then follows.

Given a set of primitive vectors, an obvious choice among the many possible

primitive unit cells would be

{R| R = x1a1 + x2a2 + x3a3; xi ∈ [0, 1]}. (1.4)

From this we may infer that the volume of any primitive unit cell is given by

V0 = a3 · (a1 × a2). (1.5)

For two-dimensional lattices, the corresponding area would be

A0 = |a1 × a2|, (1.6)

whereas for a one-dimensional lattice, we would have the corresponding length

L0 = |a1|. (1.7)

A crystal structure in general is not just a Bravais lattice; rather it is obtained

from the latter by placing what is called a base in each of its points. The base is a

finite set of points occupying fixed positions with respect to each of the points of

the Bravais lattice.

The so-called honeycomb lattice is an example of a crystal structure, that is

not a Bravais lattice. This can be inferred from the fact that points A and B have
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6 Independent Electrons and Static Crystals

different perspectives of the lattice, as we can see in Fig. 1.4. This crystal structure

is obtained by adding to each point of a triangular Bravais lattice having primitive

vectors of length a, a base of two points at (0, 0) and (h, 0), with h = a/
√

3.

The actual crystal material is modeled by placing atoms, ions, molecules or rad-

icals in each of the points of a base B in a Bravais lattice BL. The crystal mass

density distribution is then given by

Figure 1.4 Honeycomb crystal structure, showing the two interpenetrating Bra-
vais triangular sublattices A and B, respectively, with black and white dots.
Different perspectives of the lattice are clearly obtained from sublattice points
A and B.

Figure 1.5 Honeycomb crystal structure, showing one Bravais triangular sublat-
tice (black dot with spacing a) and the base (one black and one white dot with

spacing h = a/
√

3)
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1.2 The Reciprocal Lattice 7

ρ(X) =
∑

R∈BL

∑

i∈B

mi δ(X − R − ri ), (1.8)

where mi is the mass of the constituent at the point R + ri of the crystal struc-

ture. One can verify that the above expression is invariant under the BL symmetry

operations (1.3), namely,

ρ(X) = ρ(X + T), (1.9)

which follows from the fact that
∑

R =
∑

R−T for R ∈ BL.

In the next section we will study the Fourier expansion of periodic quanti-

ties possessing the Bravais lattice symmetry (1.9) and shall explore the important

consequences of this condition.

1.2 The Reciprocal Lattice

Let f (X) be a periodic physical quantity exhibiting the same symmetry as a given

Bravais lattice, namely

f (X) = f (X + R). (1.10)

An example of such a quantity is the crystal mass distribution function ρ(X),

introduced in (1.8).

The invariance of a function f (X) under translations by Bravais lattice points

manifests itself in its Fourier expansion as

f (X) =
∑

q

f (q) exp {iq · X}

=
∑

q

f (q) exp {iq · (X + R)} , (1.11)

which implies

q · R = 2πn ; n ∈ Z. (1.12)

This relates the position vectors of a certain Bravais lattice to the argument of the

Fourier transform of any function having the same symmetry of such a lattice.

Considering that R =
∑

i ni ai , according to (1.1), we see that the above relation

is solved by

q =
∑

j

l j b j ; l j ∈ Z, (1.13)

provided the vectors b j satisfy the following relation with the primitive vectors of

the Bravais lattice,

ai · b j = 2πδi j . (1.14)
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8 Independent Electrons and Static Crystals

Indeed, this implies

q · R = 2π

(

∑

i

ni li

)

; ni , li ∈ Z, (1.15)

and it is easy to see that the quantity between parentheses above is an integer. We

conclude, therefore, that (1.13) with the condition (1.14) satisfies (1.12).

The solution of (1.14) for the vectors bi in three dimensions would be

b1 =
(

2π

V0

)

a2 × a3, (1.16)

where V0 is given by (1.5). The vectors b2 and b3 are obtained by cyclic permu-

tations. An example in two dimensions would be the square lattice, for which the

solution of (1.14) would be

bi = 2π
ai

|ai |2
, i = 1, 2. (1.17)

For a one-dimensional lattice, the solution of (1.14) would be

b1 = 2π
a1

|a1|2
. (1.18)

The set of vectors q in (1.13) clearly form themselves a Bravais lattice with

primitive vectors bi , namely

{Q| Q = n1b1 + n2b2 + n3b3; ni ∈ Z}. (1.19)

This is called “reciprocal lattice,” a name derived from the fact that the vectors bi

have dimension of inverse length, whereas the corresponding vectors of the original

lattice, namely ai have dimension of length. Notice that there is only one reciprocal

lattice associated to a given Bravais lattice and that the latter is the reciprocal of

the former.

The Fourier components of a periodic function possessing the same symmetry

of a certain Bravais lattice only depend on wave-vectors, which belong to the cor-

responding reciprocal lattice. This fact has deep consequences, as we shall see. For

instance, the Fourier transform of a function satisfying (1.10), for a certain Bravais

lattice {R},

f (Q) =
∫

V

d3 X f (X) exp {−iQ · X} , (1.20)

becomes after making X = r + R,
∫

V
=

∑

R

∫

V0

f (Q) =
∑

R

∫

V0

d3r f (r + R) exp {−iQ · (r + R)}
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1.2 The Reciprocal Lattice 9

Figure 1.6 Reciprocal lattice vectors G are the director-vectors of a family of
planes in the original Bravais lattice, spaced by d, according to Eq. (1.22).

= N

∫

V0

d3r f (r) exp {−iQ · r} , (1.21)

where N is the number of points/cells in the Bravais lattice. The last step follows

from the symmetry of the function and the fact that Q belongs to the reciprocal

lattice. We see that the relevant integral sweeps the primitive unit cell only.

The vectors in the set {Q} have an interesting and important feature in connection

to its associated Bravais lattice. It is not difficult to see that any Bravais lattice

contains different (infinitely many) sets of parallel planes separated by a distance

d . The subset of vectors of the Bravais lattice belonging to the nth plane of such

set satisfy the relation

R ·
G

|G|
= nd ; n ∈ Z, (1.22)

where G is a vector perpendicular to this family of planes. By choosing |G| = 2π
d

,

we see that (1.22) reduces to (1.12). We then may infer that the director-vectors G

are just the elements of the reciprocal lattice (1.19). Each of the vectors Q in (1.19),

therefore, determines a family of parallel planes in the Bravais lattice, orthogonal

to it and such that the basic spacing between adjacent planes is d = 2π
|Q| .

Let us turn now to a concept that is of foremost importance in the reciprocal

lattice. That is the Wigner–Seitz primitive unit cell. This is defined by a pecu-

liar choice of the cell boundary, which is obtained according to the following

method. For each of the lattice points, draw lines connecting it to its 1st neigh-

bors, 2nd neighbors. . . (as much as needed), and then take the set of planes (lines in

two dimensions) orthogonal to these lines and intersecting them right at the mid-

dle. The resulting cell boundary is the closed surface formed by the union of the
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10 Independent Electrons and Static Crystals

Figure 1.7 The reciprocal lattice of a square lattice with lattice parameter a is a

square lattice with spacing b = 2π
a

, represented in the figure as black dots. The
central square is the First Brillouin zone, the Wigner–Seitz primitive unit cell of
the reciprocal lattice.

regions belonging to each of these planes, which form faces. The points of such

planes not forming faces of the cell boundary are discarded. The adaptation of this

construction to one-dimensional lattices is straightforward.

We have seen that any primitive unit cell has the same volume V
N

, so this is

accordingly the volume of the Wigner–Seitz cell. It can be shown, however, that

it is, among all possible primitive unit cells, the one for which the sum of the dis-

tances between the cell points and the lattice point it contains is minimal. Another

property of the Wigner–Seitz cell is that, by construction, it has the same symmetry

as the lattice for which it is defined.

The Wigner–Seitz primitive unit cell of the reciprocal lattice is called the first

Brillouin zone. As we shall see, it plays a fundamental role in the quantum-

mechanical description of crystalline solids, having profound implications upon

the electronic properties of these materials. We shall understand the reason for that

in the next section.

The reciprocal lattice also plays an important role in connection with the pattern

of x-ray scattering by a crystal. When electromagnetic radiation of wavelength

λ falls upon a crystal, the waves reflected by adjacent planes of the Bravais lat-

tice undergo constructive interference whenever the Bragg condition is satisfied,

namely

2d sin θ = nλ ; n ∈ N, (1.23)

where d is the interplane spacing for a family of parallel planes, and θ , the angle

between these planes and the direction of the incident radiation (see Fig. 1.9). This,
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1.2 The Reciprocal Lattice 11

Figure 1.8 Reciprocal lattice of a triangular lattice. The shaded area is the First
Brillouin zone.

Figure 1.9 Interference between waves scattered from adjacent planes with spac-
ing d, leading to the Bragg condition. The difference in the optical paths of the
two beams is 2d sin θ .

of course, will only occur at significative angles when λ is comparable to d ≃
0.1nm, which corresponds to the x-ray region.

The process of reflection of electromagnetic radiation by a crystalline solid may

be formulated equivalently as the quantum-mechanical elastic scattering of photons

by a periodic potential, which has the same symmetry as the Bravais lattice of the

crystal. The probability amplitude for an incident photon with wave-vector ki to

be scattered into a final state with wave-vector k f is given, in first-order Born

approximation, by an expression proportional to

〈k f |V (r)|ki 〉 =
∫

d3re−i(k f −ki )·rV (r). (1.24)

This is the Fourier transform of the potential, which can be written as

V (r) =
∑

R∈BL

∑

i∈B

vi (r − R − ri ). (1.25)

This has the symmetry of the Bravais lattice, Eq. (1.10), and consequently it follows

that

k f − ki = Q (1.26)
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12 Independent Electrons and Static Crystals

is a vector of the reciprocal lattice. Using this fact and making the change of

variable r → r − R − ri we see that

〈k f |V (r)|ki 〉 = N
∑

i∈B

vi (Q)e−iQ·ri , (1.27)

where the sum is over the base points. When this has just a single point, we would

have

〈k f |V (r)|ki 〉 = N v(Q), (1.28)

and when all the base points are occupied by identical constituents,

〈k f |V (r)|ki 〉 = N v(Q)
∑

i∈B

e−iQ·ri ≡ N v(Q)S(Q). (1.29)

Notice the presence of the “geometric form factor,” S(Q), whenever the base has

more than one point. In the three previous equations, Q is given by (1.26), a relation

known as the von Laue condition. If we square it and use the fact that for elastic

scattering |k f | = |ki | = 2π
λ

, that |Q| = 2π
d

for reciprocal lattice vectors, and that

the angle between the incident and reflected wave-vectors is 2θ , we can immedi-

ately show that (1.26) is just the first Bragg condition for constructive interference.

Hence the first-order Born approximation gives the first Bragg peak, which will

have an intensity proportional to the squared modulus of the amplitude (1.27).

X-ray spectroscopy constitutes a powerful instrument for the investigation of the

structural properties of crystalline solids. In an x-ray experiment, the peaks in the

reflected beam will occur right at ki + Q, with an intensity proportional to |v(Q)|2,

with a possible additional modulation by the geometrical form factor. We con-

clude that the peaks in the interference spectrum occurring in the x-ray scattering

by a crystal provide a direct mapping of the reciprocal lattice of this crystal. The

intensity of these peaks will bring information about the local potential v.

In the next section, we explore the consequences of a crystalline structure on the

electronic properties of the material.

1.3 Independent Electrons in a Periodic Potential

We will consider here the behavior of electrons in the presence of a periodic poten-

tial possessing the same symmetry as a given Bravais lattice. In this first approach

we shall neglect the interactions of the electrons among themselves as well as the

deviations from an ideal lattice, due, for instance, to thermal and quantum fluctu-

ations. Such periodic potential is created by the basic constituents of the crystal,

which are localized at each of the points of the crystalline structure. Its general

form is given by (1.25).

The consequences of the presence of a periodic potential in a crystal are of

foremost importance for the description of the electronic properties in a crystalline
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