Atlas of Vitrified Blastocysts in Human Assisted Reproduction
Atlas of Vitrified Blastocysts in Human Assisted Reproduction

THOMAS EBNER
Department of Gynecological Endocrinology and Kinderwunsch Zentrum, Landes-Frauen- und Kinderklinik Linz, and Faculty of Medicine, Johannes Kepler University of Linz, Linz, Austria

PIERRE VANDERZWALMEN
The IVF Centres of Professor Zech in Bregenz, Austria; the IVF unit at the Centre Hospitalier Inter-régional Edith Cavell (CHIREC) in Braine l’alleud-Brussels, Belgium

BARBARA WIRLEITNER
The IVF Centres of Professor Zech in Bregenz, Austria
CONTENTS

Preface ix
List of abbreviations x

Introduction 1

Part A Open Vitrification Method 13
Case 1 Hypogonadotropic hypogonadism: not pregnant 14
Case 2 Male factor infertility: missed abortion (no heart activity) 16
Case 3 Endometriosis, PCO: live birth, healthy boy 18
Case 4 Male factor infertility: live birth, healthy twins (monochorionic diamniotic) 20
Case 5 Male factor infertility: live birth, healthy twins (dichorionic diamniotic) 22
Case 6 PCO: live birth, boy with cerebral edema 24
Case 7 Male factor infertility (translocation carrier): live birth, healthy girl 26
Case 8 Male factor infertility: live birth. Major malformation (cardiac anomaly, child death at age 5 months) 28
Case 9 Male factor infertility: live birth, healthy dichorionic, diamniotic twins (2 girls) 30
Case 10 PCO, male factor infertility: pregnant, intrauterine fetal death due to trisomy 21 32
Case 11 Endometriosis: not pregnant 34
Case 12 Tubal infertility: ectopic pregnancy 36
Case 13 Tubal infertility: dichorionic-diamniotic twin pregnancy, live birth, 1 healthy girl, 1 girl with atresia of duodenum 38
Case 14 Male factor infertility: live birth, healthy girl 40
Case 15 Male factor infertility: live birth, healthy boy 42
Case 16 PCO: live birth, healthy boy 44
Case 17 Male factor infertility: termination of pregnancy due to trisomy 21 46
Case 18 Male factor infertility: live birth, healthy girl 48
Case 19 Male factor infertility (HIV): not pregnant 50
Case 20 Endometriosis, tubal infertility: live birth, healthy boy 52
Case 21 Tubal infertility: live birth, healthy boy 54
Case 22 Male factor infertility: live birth, healthy boy 56
Case 23 Male factor infertility: not pregnant 58
Case 24 Male factor infertility, PCO: live birth, boy with Goldenhar syndrome 60
Case 25 Male factor infertility: live birth, healthy boy 62
Case 26 Male factor infertility: biochemical pregnancy 64
Case 27 Endometriosis, tubal infertility: live birth, healthy boy 66
Case 28 Endometriosis: ectopic pregnancy 68
Case 29 Unexplained infertility: live birth, healthy boy 70
Case 30 Male factor infertility: live birth, healthy girl 72
Case 31 Male factor infertility: biochemical pregnancy 74
Case 32 Male factor infertility, pregnant, missed abortion (no heart activity) 76
Case 33 Male factor infertility: missed abortion (no heart activity) 78
Case 34 Male factor infertility: live birth, healthy boy 80
Case 35 Male factor infertility: not pregnant 82
Case 36 PCO, male factor infertility: live birth, dichorionic diamniotic twins, one girl with minor malformation (ventricular septum defect) 84
Case 37 Male factor infertility: live birth, healthy dichorionic diamniotic twins (boy and girl) 86
Case 38 HIV, male factor infertility: not pregnant 88
Case 39 PCO, male factor infertility: biochemical pregnancy 90
Case 40 Male factor infertility: live birth, healthy boy 92
Case 41 Endometriosis, male factor infertility: live birth, healthy boy 94
Case 42 Endometriosis: live birth, healthy boy 96
Case 43 Male factor infertility: missed abortion (no heart activity) 98
Case 44 Male factor infertility: missed abortion (positive heart activity) 100
Case 45 Male factor infertility: missed abortion (positive heart activity) 102
Case 46 Endometriosis, tubal infertility: live birth, healthy girl 104
Case 47 Male factor infertility: biochemical pregnancy 106
Case 48 Male factor infertility, PCO: live birth, healthy boy 108
Case 49 Tubal infertility, recurrent abortion: ectopic pregnancy 110
Case 50 PCO, male factor infertility: biochemical pregnancy 112
Case 51 PCO: live birth, healthy boy 114
Case 52 Male factor infertility: live birth, healthy boy 116
Case 53 Male factor infertility: not pregnant 118
Case 54 Unexplained infertility: biochemical pregnancy 120
Case 55 Male factor infertility: live birth, healthy boy 122
Case 56 Male factor infertility: live birth, healthy boy 124
Case 57 Male factor infertility: live birth, healthy girl 126
Case 58 Male factor infertility: live birth, healthy girl 128
Case 59 Male factor infertility: not pregnant 130
Case 60 Male factor infertility: live birth, healthy girl 132
Case 61 Tubal infertility: live birth, healthy girl 134
Case 62 Tubal infertility: pregnant, missed abortion
(no heart activity) 136
Case 63 Male factor infertility: live birth, healthy girl 138
Case 64 Male factor infertility: live birth, healthy boy 140
Case 65 Male factor infertility: missed abortions (2 positive heart
activities) 142
Case 66 Tubal infertility, male factor infertility: missed abortion
(positive heart activity) 144
Case 67 Male factor infertility: live birth, healthy girl 146
Case 68 Endometriosis: live birth, healthy boy 148
Case 69 Male factor infertility, hypothalamic pituitary failure: live birth,
healthy girl 150
Case 70 Endometriosis: live birth, healthy girl 152

Part B Closed Vitrification Method 155
Case 71 Male factor infertility: live birth, 2 healthy twin boys 156
Case 72 Male factor infertility: clinical pregnancy, abortion gestation
week 7 158
Case 73 PCOS: live birth, healthy boy 162
Case 74 Endometriosis, male factor infertility: not pregnant 164
Case 75 PCOS, male factor infertility: live birth twins (2 healthy boys) 166
Case 76 PCOS: stillbirth after premature birth and loss of amniotic fluid in
gestation week 24 168
Case 77 PCOS, male factor infertility: not pregnant/early pregnancy loss gestation week 8 after one positive heart activity 170
Case 78 Male factor infertility: live birth, healthy boy 174
Case 79 Unexplained infertility: biochemical pregnancy 176
Case 80 Azospermia after seminoma and chemotherapy: live birth, healthy boy 178
Case 81 Tubal factor: not pregnant 180
Case 82 PCOS, male factor infertility: live birth, healthy boy 184
Case 83 Endometriosis: live birth, healthy girl 186
Case 84 Male factor infertility: not pregnant 188
Case 85 Endometriosis: live birth, healthy girl 190
Case 86 Tubal factor: after detection of 2 embryos with positive heart activity live birth of one healthy girl 194
Case 87 Tubal factor: biochemical pregnancy 198
Case 88 PCOS, male factor infertility: live birth, healthy boy 200
Case 89 Tubal factor: live birth, healthy girl 202
Case 90 Amenorrhea, tubal factor: not pregnant 204
Case 91 Ovarectomy right, cervical anomaly: live birth, healthy boy 206
Case 92 Endometriosis, male factor infertility: live birth, healthy girl 208
Case 93 PCOS, male factor infertility: live birth, healthy girl 210
Case 94 PCOS, OAT: live birth, healthy boy after 2 positive heart activities 212
Case 95 Tubal factor, endometriosis: live birth of a healthy twin pair (one girl and one boy) 216
Case 96 PCOS: live birth, healthy girl 218
Case 97 Male factor, endometriosis: live birth, healthy girl 220
Case 98 Endometriosis, uterine polyps, male factor infertility: live birth, healthy twin pair (one girl and one boy) 222
Case 99 Tubal factor, uterus anomaly, male factor infertility: triplet pregnancy, loss of one embryo after positive heart activity, birth of monozygotic twins gestation week 36 (healthy girls) 224
Case 100 Male factor infertility, recurrent pregnancy loss: live birth, healthy girl 228

Index 231
In Assisted Reproduction Technologies we live in times when pictures have already started moving. Time-lapse imaging has taken over control of non-invasive embryo selection. However, the quality and the success of the previous *Atlas on Oocytes, Zygotes and Embryos in Reproductive Medicine* (edited by M. Van den Bergh, T. Ebner and K. Elder) emphasize the value of static images in the field of IVF.

It is especially in cryopreservation that it is almost impossible to create proper video sequences since during the cooling and warming steps several cryopreservation media have to be used, thus requiring numerous transfers of the embryos from one drop to another. In addition to this technical limitation, the different concentrations of cryoprotectants used change media viscosity which will lead to floating of the embryos not allowing for proper focusing. As a matter of fact, in these cases serial images may provide for a better view of morphological changes during cryopreservation and subsequent embryo viability.

Since slow freezing has virtually been replaced by vitrification this Atlas is exclusively focused on the latter technique representing the state of the art in cryopreservation. Embryologists performing vitrification may be divided into two groups: those who allow direct contact between the embryos and liquid nitrogen, thus optimizing cooling and warming rates, and advocates of the closed system, who hermetically seal the embryos before vitrifying them, which avoids theoretical contamination due to impure nitrogen.

The book in hand is the first to cope with both vitrification strategies – the open and the closed one. This dichotomy is also reflected by the contents of the Atlas. The open system is covered by the Kinderwunsch Zentrum Linz, Austria, and the cases of the closed system stem from the team of the IVF Centers Prof. Zech in Bregenz, Austria. Regardless of the mode of vitrification chosen it was decided to include at least three images per case, one before vitrification, one immediately after warming, and one prior to transfer. This not only illustrates morphological changes of the embryos but also documents their survival.

Treatment outcome up to birth in combination with the clinical data provided makes this Atlas unique. It should provide valuable insight into daily practical procedures such as controlled ovarian hyperstimulation, embryo culture and selection, and vitrification as performed by two experienced and successful IVF teams.

We are confident that this collection will provide a helpful learning and reference tool, not only for students and trainees but also for experienced clinical embryologists and clinicians.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMH</td>
<td>anti-Müllerian hormone</td>
</tr>
<tr>
<td>AW</td>
<td>after warming</td>
</tr>
<tr>
<td>BMI</td>
<td>body mass index</td>
</tr>
<tr>
<td>BT</td>
<td>blastocyst transfer</td>
</tr>
<tr>
<td>BV</td>
<td>before vitrification</td>
</tr>
<tr>
<td>COC</td>
<td>cumulus–oocyte complex</td>
</tr>
<tr>
<td>ET</td>
<td>embryo transfer</td>
</tr>
<tr>
<td>FSH</td>
<td>follicle stimulating hormone</td>
</tr>
<tr>
<td>HMG</td>
<td>human menopausal gonadotropin</td>
</tr>
<tr>
<td>ICM</td>
<td>inner cell mass</td>
</tr>
<tr>
<td>ICSI</td>
<td>intracytoplasmic sperm injection</td>
</tr>
<tr>
<td>IUI</td>
<td>intrauterine insemination</td>
</tr>
<tr>
<td>IVF</td>
<td>in vitro fertilization</td>
</tr>
<tr>
<td>LH</td>
<td>luteinizing hormone</td>
</tr>
<tr>
<td>MH</td>
<td>menstrual history</td>
</tr>
<tr>
<td>NAD</td>
<td>no abnormality detected</td>
</tr>
<tr>
<td>OHSS</td>
<td>ovarian hyperstimulation syndrome</td>
</tr>
<tr>
<td>PCO</td>
<td>polycystic ovaries/polycystic ovarian syndrome</td>
</tr>
<tr>
<td>PVS</td>
<td>perivitelline space</td>
</tr>
<tr>
<td>TE</td>
<td>trophectoderm</td>
</tr>
<tr>
<td>TESE</td>
<td>testicular sperm extraction</td>
</tr>
<tr>
<td>ZP</td>
<td>zona pellucida</td>
</tr>
</tbody>
</table>