Cambridge University Press 978-1-107-07402-6 - A Guide to: Monte Carlo Simulations in Statistical Physics: Fourth Edition David P. Landau and Kurt Binder Frontmatter <u>More information</u>

A Guide to Monte Carlo Simulations in Statistical Physics

Dealing with all aspects of Monte Carlo simulation of complex physical systems encountered in condensed-matter physics and statistical mechanics, this book provides an introduction to computer simulations in physics.

This fourth edition contains extensive new material describing numerous powerful algorithms not covered in previous editions, in some cases representing new developments that have only recently appeared. Older methodologies whose impact was previously unclear or unappreciated are also introduced, in addition to many small revisions that bring the text and cited literature up to date. This edition also introduces the use of petascale computing facilities in the Monte Carlo arena.

Throughout the book there are many applications, examples, recipes, case studies, and exercises to help the reader understand the material. It is ideal for graduate students and researchers, both in academia and industry, who want to learn techniques that have become a third tool of physical science, complementing experiment and analytical theory.

DAVID P. LANDAU is the Distinguished Research Professor of Physics and founding Director of the Center for Simulational Physics at the University of Georgia, USA.

KURT BINDER is Professor Emeritus of Theoretical Physics and Gutenberg Fellow at the Institut für Physik, Johannes-Gutenberg-Universität, Mainz, Germany.

Cambridge University Press 978-1-107-07402-6 - A Guide to: Monte Carlo Simulations in Statistical Physics: Fourth Edition David P. Landau and Kurt Binder Frontmatter More information Cambridge University Press 978-1-107-07402-6 - A Guide to: Monte Carlo Simulations in Statistical Physics: Fourth Edition David P. Landau and Kurt Binder Frontmatter <u>More information</u>

A Guide to Monte Carlo Simulations in Statistical Physics

Fourth Edition

David P. Landau Center for Simulational Physics, University of Georgia, USA

Kurt Binder

Institut für Physik, Johannes-Gutenberg-Universität, Germany

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107074026

© D. Landau and K. Binder 2015

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2000 Second edition published 2005 Third edition published 2009 Fourth edition published 2015

Printed in the United Kingdom by TJ International Ltd. Padstow Cornwall

A catalogue record for this publication is available from the British Library

ISBN 978-1-107-07402-6 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Preface	XV
1 Introduction	1
1.1 What is a Monte Carlo simulation?	1
1.2 What problems can we solve with it?	2
1.3 What difficulties will we encounter?	3
1.3.1 Limited computer time and memory	3
1.3.2 Statistical and other errors	3
1.4 What strategy should we follow in approaching a problem	.? 4
1.5 How do simulations relate to theory and experiment?	4
1.6 Perspective	5
References	6
2 Some necessary background	7
2.1 Thermodynamics and statistical mechanics: a quick	
reminder	7
2.1.1 Basic notions	7
2.1.2 Phase transitions	15
2.1.3 Ergodicity and broken symmetry	27
2.1.4 Fluctuations and the Ginzburg criterion	27
2.1.5 A standard exercise: the ferromagnetic Ising model	28
2.2 Probability theory	30
2.2.1 Basic notions	30
2.2.2 Special probability distributions and the central lin	nit
theorem	31
2.2.3 Statistical errors	33
2.2.4 Markov chains and master equations	33
2.2.5 The 'art' of random number generation	35
2.3 Non-equilibrium and dynamics: some introductory	
comments	41
2.3.1 Physical applications of master equations	41
2.3.2 Conservation laws and their consequences	43
2.3.3 Critical slowing down at phase transitions	46
2.3.4 Transport coefficients	48

v

page

Contents vi 235 Co ncludi

		2.3.5	Concluding comments: why bother about dynamics	
			when doing Monte Carlo for statics?	48
	Ref	erence	S	48
3	Sin	nple sa	ampling Monte Carlo methods	51
	3.1	Intro	duction	51
	3.2	Comp	parisons of methods for numerical integration of given	
		functi	ions	51
		3.2.1	Simple methods	51
		3.2.2	Intelligent methods	53
	3.3	Boun	dary value problems	54
	3.4	Simu	lation of radioactive decay	56
	3.5	Simu	lation of transport properties	57
		3.5.1	Neutron transport	57
		3.5.2	Fluid flow	58
	3.6	The p	percolation problem	58
		3.6.1	Site percolation	59
		3.6.2	Cluster counting: the Hoshen–Kopelman algorithm	62
		3.6.3	Other percolation models	63
	3.7	Findi	ng the groundstate of a Hamiltonian	63
	3.8	Gene	ration of 'random' walks	64
		3.8.1	Introduction	64
		3.8.2	Random walks	65
		3.8.3	Self-avoiding walks	66
		3.8.4	Growing walks and other models	68
	3.9	Final	remarks	69
	Ref	erence	S	69
4	Im	portar	nce sampling Monte Carlo methods	71
	4.1	Intro	duction	71
	4.2	The s	implest case: single spin-flip sampling for the simple	
		Ising	model	72
		4.2.1	Algorithm	73
		4.2.2	Boundary conditions	76
		4.2.3	Finite size effects	79
		4.2.4	Finite sampling time effects	93
		4.2.5	Critical relaxation	100
	4.3	Other	discrete variable models	108
		4.3.1	Ising models with competing interactions	108
		4.3.2	<i>q</i> -state Potts models	112
		4.3.3	Baxter and Baxter–Wu models	113
		4.3.4	Clock models	114
		4.3.5	Ising spin glass models	115
		4.3.6	Complex fluid models	116
	4.4	Spin-	exchange sampling	117
		4.4.1	Constant magnetization simulations	117
		4.4.2	Phase separation	118

Cambridge University Press
978-1-107-07402-6 - A Guide to: Monte Carlo Simulations in Statistical Physics: Fourth Edition
David P. Landau and Kurt Binder
Frontmatter
More information

			C	Contents	vii
		112	Diffusion		120
		4.4.3	Diffusion Under demonsional actions down		120
	4 5	4.4.4	Hydrodynamic slowing down		122
	4.3	MICT(Demonstrating internets		123
		4.5.1	Demon algorithm		123
		4.5.2	Dynamic ensemble		123
	1.0	4.5.5	Q2K		124
	4.0	Gene	ral remarks, choice of ensemble		124
	4.7	Static	s and dynamics of polymer models on lattices		120
		4.7.1	E 11 11 11 11		120
		4.7.2	Fixed bond length methods		120
		4.7.3	Bond fluctuation method		128
		4.7.4	Enhanced sampling using a fourth dimension		128
		4.7.5	I he 'wormhole algorithm' – another method	to	120
		176	equilibrate dense polymeric systems	• .	130
		4.7.6	Polymers in solutions of variable quality: θ -p	oint,	120
			collapse transition, unmixing		130
		4.7.7	Equilibrium polymers: a case study		133
		4.7.8	The pruned enriched Rosenbluth method (PI	ERM): a	
			biased sampling approach to simulate very lo	ng	10/
	1.0	0	isolated chains		136
	4.8	Some	e advice		139
	Ref	erence	S		140
5	Мо	re on	importance sampling Monte Carlo metho	ods for	
	latt	ice sy	stems		144
	5.1	Clust	er flipping methods		144
		5.1.1	Fortuin–Kasteleyn theorem		144
		5.1.2	Swendsen–Wang method		145
		5.1.3	Wolff method		148
		5.1.4	'Improved estimators'		149
		5.1.5	Invaded cluster algorithm		149
		5.1.6	Probability changing cluster algorithm		150
	5.2	Speci	alized computational techniques		151
		5.2.1	Expanded ensemble methods		151
		5.2.2	Multispin coding		151
		5.2.3	N-fold way and extensions		152
		5.2.4	Hybrid algorithms		155
		5.2.5	Multigrid algorithms		155
		5.2.6	Monte Carlo on vector computers		155
		5.2.7	Monte Carlo on parallel computers		156
	5.3	Classi	ical spin models		157
		5.3.1	Introduction		157
		5.3.2	Simple spin-flip method		158
		5.3.3	Heatbath method		160
		5.3.4	Low temperature techniques		161
		5.3.5	Over-relaxation methods		161

Cambridge University Press
978-1-107-07402-6 - A Guide to: Monte Carlo Simulations in Statistical Physics: Fourth Edition
David P. Landau and Kurt Binder
Frontmatter
More information

viii		Conte	ents	
		536	Wolff embedding trick and cluster flipping	162
		537	Hybrid methods	162
		538	Monte Carlo dynamics vs. equation of motion	105
		5.5.0	dynamics	163
		5.3.9	Topological excitations and solitons	164
	5.4	Syste	ms with guenched randomness	166
		5.4.1	General comments: averaging in random systems	166
		5.4.2	Parallel tempering: a general method to better	
			equilibrate systems with complex energy landscapes	171
		5.4.3	Random fields and random bonds	172
		5.4.4	Spin glasses and optimization by simulated	
			annealing	173
		5.4.5	Ageing in spin glasses and related systems	178
		5.4.6	Vector spin glasses: developments and surprises	178
	5.5	Mode	els with mixed degrees of freedom: Si/Ge alloys,	
		a case	estudy	179
	5.6	Meth	ods for systems with long range interactions	181
	5.7	Parall	el tempering, simulated tempering, and related	
		metho	ods: accuracy considerations	183
	5.8	Samp	ling the free energy and entropy	186
		5.8.1	Thermodynamic integration	186
		5.8.2	Groundstate free energy determination	187
		5.8.3	Estimation of intensive variables: the chemical	100
		F 0 4	potential	188
		5.8.4	Lee-Kosterlitz method	189
	5.0	5.8.5 Miaa	Free energy from inite size dependence at $T_{\rm c}$	189
	5.9	5 0 1	Inhomogeneous systems: surfaces interfaces etc.	190
		5.9.1	Anisotropic critical phenomena: simulation boxes	190
		5.9.2	with arbitrary aspect ratio	106
		593	Other Monte Carlo schemes	198
		594	Inverse and reverse Monte Carlo methods	200
		5.9.5	Finite size effects: review and summary	202
		5.9.6	More about error estimation	202
		5.9.7	Random number generators revisited	204
	5.10	Sumr	nary and perspective	207
	Refe	rences	- I I	208
6	Off	1 - 4 - 1 - 1		212
0	011-			212
	0.1	F101d	8 NUT appemble and the visial theorem	212
		0.1.1	No T ensemble	212
		613	Grand canonical ensemble	210
		614	Near critical coexistence: a case study	220
		615	Subsystems: a case study	22 1
		6.1.6	Gibbs ensemble	220

Cambridge University Press
978-1-107-07402-6 - A Guide to: Monte Carlo Simulations in Statistical Physics: Fourth Edition
David P. Landau and Kurt Binder
Frontmatter
More information

		6.1.7	Widom particle insertion method and variants	234
		6.1.8	Monte Carlo phase switch	236
		6.1.9	Cluster algorithm for fluids	239
		6.1.10	Event chain algorithms	241
	6.2	'Short	range' interactions	242
		6.2.1	Cutoffs	242
		6.2.2	Verlet tables and cell structure	242
		6.2.3	Minimum image convention	243
		6.2.4	Mixed degrees of freedom reconsidered	243
	6.3	Treatr	nent of long range forces	243
		6.3.1	Reaction field method	243
		6.3.2	Ewald method	244
		6.3.3	Fast multipole method	245
	6.4	Adsor	bed monolayers	246
		6.4.1	Smooth substrates	246
		6.4.2	Periodic substrate potentials	246
	6.5	Comp	lex fluids	247
		6.5.1	Application of the Liu–Luijten algorithm to	
			a binary fluid mixture	250
	6.6	Polym	ers: an introduction	251
		6.6.1	Length scales and models	251
		6.6.2	Asymmetric polymer mixtures: a case study	257
		6.6.3	Applications: dynamics of polymer melts; thin	
			adsorbed polymeric films	261
		6.6.4	Polymer melts: speeding up bond fluctuation	
			model simulations	265
	6.7	Config	gurational bias and 'smart Monte Carlo'	267
	6.8	Estima	ation of excess free energies due to walls for fluids	
		and so	lids	270
	6.9	A sym	metric, Lennard–Jones mixture: a case study	272
	6.10	Finite	size effects on interfacial properties: a case study	275
	6.11	Outloo	ok	277
	Refe	rences		278
7	Rew	eightir	ng methods	282
•	7 1	Backer	round	282
	7.1	7 1 1	Distribution functions	282
		712	Umbrella sampling	282
	72	Single	histogram method	285
		7 2 1	The Ising model as a case study	286
		7.2.1	The surface-bulk multicritical point: another case	200
		1.2.2	study	292
	7.3	Multil	histogram method	295
	7.4	Broad	histogram method	296
	7.5	Transi	ition matrix Monte Carlo	296
	7.6	Multic	canonical sampling	290
	1.0	mann	curronicur sumpring	271

mbridge University Press	
8-1-107-07402-6 - A Guide to: Monte Carlo Simulations in Statistical Physics: Fourth Editio	m
wid P. Landau and Kurt Binder	
ontmatter	
oreinformation	

x		Conter	nts	
		7.6.1	The multicanonical approach and its relationship	
			to canonical sampling	297
		7.6.2	Near first order transitions	299
		7.6.3	Groundstates in complicated energy landscapes	300
		7.6.4	Interface free energy estimation	301
	7.7	A case	study: the Casimir effect in critical systems	302
	7.8	Wang-	-Landau sampling	303
		7.8.1	Basic algorithm	303
		7.8.2	Applications to models with continuous variables	307
		7.8.3	A simple example of two-dimensional	
			Wang–Landau sampling	307
		7.8.4	Microcanonical entropy inflection points	308
		7.8.5	Back to numerical integration	309
		7.8.6	Replica exchange Wang–Landau sampling	310
	7.9	A case	study: evaporation/condensation transition	
		of drou	blets	314
	Refe	rences		316
0	0			210
8	Qua	ntum I	Vonte Carlo methods	319
	8.1	Introd	uction	319
	ð.2	reynn	an path integral formulation	320
		8.2.1	Off-lattice problems: low temperature properties	220
		0 2 2	of crystals	320
		8.2.2	Bose statistics and superfluidity	327
		8.2.3	Path integral formulation for rotational degrees	220
	0.2	т	or freedom	328
	8.3		The Line we delive the second field	221
		ð.3.1 022	A ning model in a transverse field	222
		8.3.2 9.2.2	Anisotropic Heisenberg chain	332 226
		0.3.3	A sistema and the since size and here	220
		8.3. 4 9.2.5	An intermezzo: the minus sign problem	338 240
		8.3.3 9.2.6	Spinless fermions revisited	340 242
		0.3.0 9 2 7	Continuous time simulations	3 4 2 244
		0.3.7	Decoupled cell method	245
		0.3.0 9 2 0	Handssomh's method and the stochastic series	575
		0.3.9	expansion (SSE) approach	316
		8 2 10	Wang L andau sampling for quantum models	347
		8 3 11	Fermion determinants	340
	8.4	0.3.11 Monto	Carlo methods for the study of groundstate	379
	0.4	nronor	tion	350
		8 / 1	Variational Monto Carlo (VMC)	251
		0. 1 .1 8 1 7	variational monte Carlo mathods (CEMC)	252
	85	0.т.2 Тоwer	ds constructing the nodal surface of off lattice	555
	0.3	rowar	Example a sufficient of the fatters in the fatters in the fatters in the fatter in the	
		algorit	hm	255
		argorit	11111	333

Cambridge University Press
978-1-107-07402-6 - A Guide to: Monte Carlo Simulations in Statistical Physics: Fourth Edition
David P. Landau and Kurt Binder
Frontmatter
More information

		Contents	xi	
	86	Concluding remarks	350	
	0.0 Refere	ences	360	
	Refere		500	
9	Mont	e Carlo renormalization group methods	364	
	9.1	Introduction to renormalization group theory	364	
	9.2	Real space renormalization group	368	
	9.3	Monte Carlo renormalization group	369	
		9.3.1 Large cell renormalization	369	
		9.5.2 Wa's method: infung critical exponents and	271	
		0.2.2 Swondson's method	371	
		9.5.5 Swelldsell's method	374	
		9.3.5 Dynamic problems: matching time dependent	574	
		2.5.5 Dynamic problems. matching time-dependent	375	
		9.3.6 Inverse Monte Carlo renormalization group	575	
		transformations	376	
	Refere	ences	376	
	Refere		570	
10	Non-	equilibrium and irreversible processes	378	
	10.1	Introduction and perspective	378	
	10.2	Driven diffusive systems (driven lattice gases)	378	
	10.3	Crystal growth	381	
	10.4	Domain growth	384	
	10.5	Polymer growth	387	
		10.5.1 Linear polymers	387	
	10.6	10.5.2 Gelation	387	
	10.0	Growth of structures and patterns	389	
		10.6.1 Eden model of cluster growth	200	
		10.6.2 Cluster eluster aggregation	309	
		10.6.4 Cellular automata	392	
	10.7	Models for film growth	392	
	10.7	10.7.1 Background	393	
		10.7.2 Ballistic deposition	394	
		10.7.3 Sedimentation	395	
		10.7.4 Kinetic Monte Carlo and MBE growth	396	
	10.8	Transition path sampling	398	
	10.9	Forced polymer pore translocation: a case study	399	
	10.10	The Jarzynski non-equilibrium work theorem and its		
		application to obtain free energy differences from		
		trajectories	402	
	10.11	Outlook: variations on a theme	404	
	Refere	ences	404	
11	1 Lattice gauge models: a brief introduction			
	11.1	Introduction: gauge invariance and lattice gauge theory	408	
	11.2	Some technical matters	410	

xii		Contents		
	11.3	Results for $Z(N)$ lattice gauge models	410	
	11.4	Compact U(1) gauge theory	411	
	11.5	SU(2) lattice gauge theory	412	
	11.6	Introduction: quantum chromodynamics (QCD) and		
		phase transitions of nuclear matter	413	
	11.7	The deconfinement transition of QCD	415	
	11.8	Towards quantitative predictions	418	
	11.9	Density of states in gauge theories	420	
	11.10	Perspective	421	
	Refere	ences	421	
12	A brief review of other methods of computer simulation			
	12.1	Introduction	423	
	12.2	Molecular dynamics	423	
		12.2.1 Integration methods (microcanonical ensemble)	423	
		12.2.2 Other ensembles (constant temperature, constant		
		pressure, etc.)	427	
		12.2.3 Non-equilibrium molecular dynamics	430	
		12.2.4 Hybrid methods ($MD + MC$)	430	
		12.2.5 <i>Ab initio</i> molecular dynamics	431	
		12.2.6 Hyperdynamics and metadynamics	432	
	12.3	Quasi-classical spin dynamics	432	
	12.4	Langevin equations and variations (cell dynamics)	436	
	12.5	Micromagnetics	437	
	12.6	Dissipative particle dynamics (DPD)	438	
	12.7	Lattice gas cellular automata	439	
	12.8	Lattice Boltzmann equation	440	
	12.9	Multiscale simulation	440	
	12.10	Multiparticle collision dynamics	442	
	Refere	ences	444	
13	Monte Carlo simulations at the periphery of physics			
	and b	beyond	447	
	13.1	Commentary	447	
	13.2	Astrophysics	447	
	13.3	Materials science	448	
	13.4	Chemistry	449	
	13.5	Biologically inspired physics	451	
		13.5.1 Commentary and perspective	451	
		13.5.2 Lattice proteins	451	
	126	15.5.5 Cell sorting	455	
	13.0	Biology Mathematics (statistics	454	
	13./	Iviatnematics/ statistics	455	
	13.8	SociopnySics	450	
	13.9	Econophysics	450	
	15.10	I rame simulations	457	
	15.11	Medicine	459	

Cambridge University Press
978-1-107-07402-6 - A Guide to: Monte Carlo Simulations in Statistical Physics: Fourth Edition
David P. Landau and Kurt Binder
Frontmatter
More information

		Content	s xiii	
	13.12 13.13 Refere	Networks: what connections really matter? Finance ences	460 461 462	
14	Mont	e Carlo studies of biological molecules	465	
	14.1	Introduction	465	
	14.2	Protein folding	466	
		14.2.1 Introduction	466	
		14.2.2 How to best simulate proteins: Monte Carlo or		
		molecular dynamics?	467	
		14.2.3 Generalized ensemble methods	467	
		14.2.4 Globular proteins: a case study	469	
		14.2.5 Simulations of membrane proteins	470	
	14.3	Monte Carlo simulations of RNA structures	472	
	14.4	Monte Carlo simulations of carbohydrates	472	
	14.5	Determining macromolecular structures	474	
	14.6	Outlook	475	
	Refere	ences	475	
15	Outlo	ook	477	
Ap	pendi	x: Listing of programs mentioned in the text	479	
Inc	Index			

Cambridge University Press 978-1-107-07402-6 - A Guide to: Monte Carlo Simulations in Statistical Physics: Fourth Edition David P. Landau and Kurt Binder Frontmatter More information

Preface

Historically physics was first known as 'natural philosophy' and research was carried out by purely theoretical (or philosophical) investigation. True progress was obviously limited by the lack of real knowledge of whether or not a given theory really applied to nature. Eventually experimental investigation became an accepted form of research although it was always limited by the physicist's ability to prepare a sample for study or to devise techniques to probe for the desired properties. With the advent of computers it became possible to carry out simulations of models which were intractable using 'classical' theoretical techniques. In many cases computers have, for the first time in history, enabled physicists not only to invent new models for various aspects of nature but also to solve those same models without substantial simplification. In recent years computer power has increased quite dramatically, with access to computers becoming both easier and more common (e.g. with personal computers and workstations), and computer simulation methods have also been steadily refined. As a result computer simulations have become another way of doing physics research. They provide another perspective; in some cases simulations provide a theoretical basis for understanding experimental results, and in other instances simulations provide 'experimental' data with which theory may be compared. There are numerous situations in which direct comparison between analytical theory and experiment is inconclusive. For example, the theory of phase transitions in condensed matter must begin with the choice of a Hamiltonian, and it is seldom clear to what extent a particular model actually represents real material on which experiments are done. Since analytical treatments also usually require mathematical approximations whose accuracy is difficult to assess or control, one does not know whether discrepancies between theory and experiment should be attributed to shortcomings of the model, the approximations, or both. The goal of this text is to provide a basic understanding of the methods and philosophy of computer simulations research with an emphasis on problems in statistical thermodynamics as applied to condensed matter physics or materials science. There exist many other simulational problems in physics (e.g. simulating the spectral intensity reaching a detector in a scattering experiment) which are more straightforward and which will only occasionally be mentioned. We shall use many specific examples and, in some cases, give

xvi Preface

explicit computer programs, but we wish to emphasize that these methods are applicable to a wide variety of systems including those which are not treated here at all. As computer architecture changes, the methods presented here will in some cases require relatively minor reprogramming and in other instances will require new algorithm development in order to be truly efficient. We hope that this material will prepare the reader for studying new and different problems using both existing as well as new computers.

At this juncture we wish to emphasize that it is important that the simulation algorithm and conditions be chosen with the physics problem at hand in mind. The *interpretation* of the resultant output is critical to the success of any simulational project, and we thus include substantial information about various aspects of thermodynamics and statistical physics to help strengthen this connection. We also wish to draw the reader's attention to the rapid development of scientific visualization and the important role that it can play in producing *understanding* of the results of some simulations.

This book is intended to serve as an introduction to Monte Carlo methods for graduate students, and advanced undergraduates, as well as more senior researchers who are not yet experienced in computer simulations. The book is divided up in such a way that it will be useful for courses which only wish to deal with a restricted number of topics. Some of the later chapters may simply be skipped without affecting the understanding of the chapters which follow. Because of the immensity of the subject, as well as the existence of a number of very good monographs and articles on advanced topics which have become quite technical, we will limit our discussion in certain areas, e.g. polymers, to an introductory level. The examples which are given are in FORTRAN, not because it is necessarily the best scientific computer language, but because for many decades of Monte Carlo simulations it was the most widespread. Many existing Monte Carlo programs and related subprograms are in FORTRAN and will be available to the student from libraries, journals, etc. (FORTRAN has also evolved dramatically over its more than 50 years of existence, and the newest versions are efficient and well suited for operations involving arrays and for parallel algorithms. Object oriented languages, like C++, while useful for writing complex programs, can be far more difficult to learn. Programs written in popular, non-compiler languages, like Java or MATLAB, can be more difficult to debug and run relatively slowly. Nevertheless, all the methods described in this book can be implemented using the reader's 'language of choice'.) A number of sample problems are suggested in the various chapters; these may be assigned by course instructors or worked out by students on their own. Our experience in assigning problems to students taking a graduate course in simulations at the University of Georgia over a more than 30-year period suggests that for maximum pedagogical benefit, students should be required to prepare cogent reports after completing each assigned simulational problem. Students were required to complete seven 'projects' in the course of the semester for which they needed to write and debug programs, take and analyze data, and prepare a report. Each report should briefly describe the algorithm used, provide sample data and data analysis, draw conclusions, and Cambridge University Press 978-1-107-07402-6 - A Guide to: Monte Carlo Simulations in Statistical Physics: Fourth Edition David P. Landau and Kurt Binder Frontmatter More information

Preface xvii

add comments. (A sample program/output should be included.) In this way, the students obtain practice in the summary and presentation of simulational results, a skill which will prove to be valuable later in their careers. For convenience, most of the case studies that are described have been simply taken from the research of the authors of this book – the reader should be aware that this is by no means meant as a negative statement on the quality of the research of numerous other groups in the field. Similarly, selected references are given to aid the reader in finding more detailed information, but because of length restrictions it is simply not possible to provide a complete list of relevant literature. Many coworkers have been involved in the work which is mentioned here, and it is a pleasure to thank them for their fruitful collaboration. We have also benefited from the stimulating comments of many of our colleagues and we wish to express our thanks to them as well.

The pace of developments in computer simulations continues at breakneck speed. This fourth edition of our 'guide' to Monte Carlo simulations updates some of the references and included numerous additions reflecting new algorithms that have appeared since work on the third edition was completed. The emphasis on the use of Monte Carlo simulations in biologically related problems in the third edition proved to foretell the future, as the use of Monte Carlo methods for the study of biological molecules has continued to expand. Similarly, the use of Monte Carlo methods in 'non-traditional' areas of research has continued to grow. There have been exciting new developments in computer hardware; in particular, the use of GPUs in scientific computing has dramatically altered the price/performance ratio for many algorithmic implementations. Because of advances in computer technology and algorithms, new results often have much higher statistical precision than some of the older examples in the text. Nonetheless, the older work often provides valuable pedagogical information for the student and may also be more readable than more recent, and more compact, papers. An additional advantage is that the reader can easily reproduce some of the older results with only a modest investment of modern computer resources. Of course, newer, higher resolution studies that are cited often permit yet additional information to be extracted from simulational data, so striving for higher precision should not be viewed as 'busy work'. We hope that this guide will help impart to the reader not only an understanding of the methodology of Monte Carlo simulations but also an appreciation for the new science that can be uncovered with the Monte Carlo method.