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Hamiltonian dynamics and symplectic
geometry
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1

The least action principle and Hamiltonian
mechanics

In this chapter, we start by reviewing Hamilton’s least action principle in
classical mechanics. We will motivate all the basic concepts in symplectic
geometry out of this variational principle. We refer the reader to (Go80) or
(Ar89) for further physical applications of this principle.

1.1 The Lagrangian action functional and its first
variation

We start with our explanations on Rn and then move onto general configuration
space M. We call Rn the (configuration) space and R × Rn the space-time. We
denote by qi, i = 1, . . . , n the standard coordinate functions of Rn, and by

(q1, . . . , qn, v1, . . . , vn)

the associated canonical coordinates of TRn � Rn × Rn. It is customary to
denote the canonical coordinates by

(q1, . . . , qn, q̇1, . . . , q̇n)

instead, especially in the physics literature. We will follow this convention,
whenever there is no danger of confusion.

We denote by γ : [t0, t1] → Rn a continuous path, regarded as the trajectory
of a moving particle. In coordinates, we may write

γ(t) = (q1(t), . . . , qn(t)), qi(t) = qi(γ(t)).

We say [t0, t1] is the domain of the path and denote

P = Pt1
t0 (Rn) = {γ | Dom(γ) = [t0, t1]}.
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4 The least action principle and Hamiltonian mechanics

In the Lagrangian formalism of classical mechanics, the relevant action
functional, called the Lagrangian action functional, has the form

Φ(γ) =
∫ t1

t0

L(t, γ, γ̇)dt

where L is a function, called the Lagrangian,

L = L(t, q, q̇) : R × Rn × Rn → R.

Example 1.1.1 Consider a motion on Rn over the time interval [t0, t1], i.e., a
map γ : [t0, t1] → Rn.

(i) The energy functional is defined by

E(γ) =
1
2

∫ t1

t0

|γ̇|2 dt.

(ii) The length of the path γ : [t0, t1] → Rn is given by

L(γ) =
∫ t1

t0

|γ̇|dt.

As in the mechanics literature, we denote by Δγ the infinitesimal variation.
In the more formal presentation, we note that the tangent space of Rn at a
given point x is canonically identified with Rn itself. Therefore we can write a
variation h = Δγ ∈ TγP, the tangent space, at the path γ as a map

h : [t0, t1] → Rn.

We denote by |h| the norm of h with respect to a given norm on the linear space

TγPt1
t0 (Rn) � Γ(γ∗(TRn)).

We will not delve into the matter of giving the precise mathematical description
of the following definition, which is the analog of the standard definitions to
the finite dimensional case in the present infinite-dimensional case. We refer to
e.g., (AMR88) for the precise mathematical definitions.

Definition 1.1.2 Let Φ be as above.

(1) A functional Φ is differentiable at x if there exists a linear map F(γ) such
that

Φ(γ + Δγ) − Φ(γ) = F(γ) · Δγ + R, (1.1.1)

where R = R(γ, h) = O(|h|2).
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1.1 The Lagrangian action functional and its first variation 5

(2) If this holds, F(γ) is said to be the differential of Φ at γ and denoted by
dΦ(γ).

(3) We call any path γ an extremal path if it satisfies F(γ) · h = 0 for all
variation h.

Now we find the formula for the differential F(γ) · h in terms of the
Lagrangian density L. For given h : [t0, t1] → Rn regarded as a variation (or a
tangent vector) of γ, we have

F(γ) · h =
d
ds

∣∣∣∣∣∣
s=0

Φ(γ + sh)

=
d
ds

∣∣∣∣∣∣
s=0

∫ t1

t0

L(t, q + sh, q̇ + sḣ)dt

=

∫ t1

t0

d
ds

∣∣∣∣∣∣
s=0

L(t, q + sh, q̇ + sḣ)dt

=

∫ t1

t0

(
∂L
∂q

· h +
∂L
∂q̇

· ḣ

)
dt.

We integrate the second term by parts and get∫ t1

t0

∂L
∂q̇

· ḣ dt =
∂L
∂q̇

· h
∣∣∣∣t1
t0
−
∫ t1

t0

d
dt

(
∂L
∂q̇

)
· h dt.

Therefore,

F(γ) · h =
∫ t1

t0

(
∂L
∂q

− d
dt

(
∂L
∂q̇

))
· h dt +

∂L
∂q̇

· h
∣∣∣∣t1
t0
. (1.1.2)

To describe the condition of extremal paths of Φ in terms of the Lagrangian
density function L, we require that the boundary term, i.e., the second term
of (1.1.2), vanish. There are two common ways of achieving this goal in the
mechanics.

1. Two-point boundary condition. We define the subset

Pt1
t0 (Rn; q0, q1) = {γ ∈ Pt1

t0 (Rn) | q(t0) = q0, q(t1) = q1} (1.1.3)

of Pt1
t0 (Rn), which consists of the paths satisfying the so-called two-point

boundary condition. In this case, the variation h = Δγ satisfies

h(t0) = 0 = h(t1).

For such γ and h, we have

∂L
∂q̇

· h
∣∣∣∣t1
t0
=
∂L
∂q̇

(t1, γ(t1), γ̇(t1)) · h(t1) − ∂L
∂q̇

(t0, γ(t0), γ̇(t0)) · h(t0) = 0 − 0 = 0.
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6 The least action principle and Hamiltonian mechanics

Therefore, if we restrict Φ to this subset Pt1
t0 (Rn; q0, q1), the corresponding

restricted functional has the first variation given by

F(γ) · h =
∫ t1

t0

(
∂L
∂q

− d
dt

(
∂L
∂q̇

))
· h dt. (1.1.4)

Hence we have derived the equation of motion.

Proposition 1.1.3 Let q0 and q1 be two fixed points in Rn. Consider the
functional

Φ(γ) =
∫ t1

t0

L(t, γ, γ̇)dt

for the paths γ under the two-point boundary condition

γ(0) = q0, γ(1) = q1.

Then γ is extremal if and only if it satisfies

∂L
∂qi

− d
dt

(
∂L
∂q̇i

)
= 0, i = 1, . . . , n. (1.1.5)

We next discuss another natural boundary condition, the periodic boundary
condition.

2. Periodic boundary conditions. Consider the subset

Lt1
t0 (Rn) = {γ ∈ Pt1

t0 (Rn) | γ(t0) = γ(t1), γ̇(t0) = γ̇(t1)}.

The corresponding variation h = Δwill satisfy the periodic boundary condition

h(t0) = h(t1).

In addition, provided the density function L = L(t, q, q̇) satisfies the time-
periodic condition

L(t0, ·, ·) ≡ L(t1, ·, ·), (1.1.6)

the boundary term of (1.1.2) again vanishes; this time, however, because we
have

∂L
∂q̇

(t1, γ(t1), γ̇(t1)) · h(t1) =
∂L
∂q̇

(t0, γ(t0), γ̇(t0)) · h(t0).

We summarize this as follows.

Proposition 1.1.4 Suppose L satisfies (1.1.6). Consider the functional

Φ(γ) =
∫ t1

t0

L(t, γ, γ̇)dt
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1.2 Hamilton’s action principle 7

restricted to the paths γ under the periodic boundary condition

γ(t0) = γ(t1), γ̇(t0) = γ̇(t1).

Then γ is extremal if and only if it satisfies (1.1.5).

Equation (1.1.5) is called the Euler–Lagrange equation of L. Note that this
is the second-order ODE with respect to the variable γ(t) = (q1(t), . . . , qn(t)).

Remark 1.1.5 Since the above discussion is independent of the choice of
coordinates (q1, . . . , qn), as long as we use the associated canonical coor-
dinates of TRn � Rn × Rn, the Euler–Lagrange equation for L is also
coordinate-independent (or covariant in the physics terminology). In other
words, if (Q1, . . . ,Qn) is another coordinate system of Rn, then the associated
Euler–Lagrange equation has the same form as

∂L
∂Qi

− d
dt

(
∂L

∂Q̇i

)
= 0, i = 1, . . . , n.

1.2 Hamilton’s action principle

The Lagrangian that is relevant in Newtonian mechanics has the form

L = T − U, (1.2.7)

where T is the kinetic energy

T = T (x, ẋ) =
1
2

mẋ · ẋ

and U = U(x) : Rn → R is the potential energy, which is a function depending
only on the position vector x ∈ Rn. Then Newton’s equation of motion

d
dt

(mq̇i) = −∂U
∂qi

, i = 1, . . . , n, (1.2.8)

is equivalent to the Euler–Lagrange equation (1.1.5) for the Lagrangian (1.2.7).
This gives rise to the following:

Hamilton’s least action principle. Motions of the mechanical system under
Newton’s second law coincide with the extremals of the functional

Φ(γ) =
∫ t1

t0

L dt

(under an appropriate boundary condition as mentioned before).
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8 The least action principle and Hamiltonian mechanics

Recall that, in Newtonian mechanics, the momentum vector is defined by

mẋ =: p (1.2.9)

and the force field is provided by

−∇U =: F.

Owing to the special form of the Lagrangian given in (1.2.7), pi = mq̇i is
nothing but ∂L/∂q̇i. This leads to the following notion in classical mechanics.
(See (Go80) or (Ar89) for more discussion.)

Definition 1.2.1 Let L be an arbitrary Lagrangian. Then the generalized
momenta, denoted as pi, are defined by

pi =
∂L
∂q̇i

. (1.2.10)

With this definition, the Euler–Lagrange equation becomes

ṗi =
∂L
∂qi

, i = 1, . . . , n. (1.2.11)

Exercise 1.2.2 Interpret (1.2.10) and (1.2.11) in the invariant fashion.
Explain why one should regard the right-hand side thereof as a covariant
one-tensor or as a differential one-form.

1.3 The Legendre transform

In solving a mechanical problem, one often first finds the formula for the
momenta pi in time and then would like to convert this into a formula for
the position coordinates qi. This is not always possible, though. A necessary
condition for the Lagrangian L is its convexity with respect to ẋ for each fixed
position vector x. Such a function should be considered as a family of convex
functions

ẋ �→ L(t, x, ẋ); Rn → R

parameterized by the position vector (t, x) ∈ R × Rn.
In this section, we discuss an important operation, called the Legendre trans-

form, that appears in many branches of mathematics. The Legendre transform
recently played an important role in a rigorous formulation of the mirror sym-
metry in relation to the Strominger–Yau–Zaslow proposal. We refer the reader
to (SYZ01), (Hi99) and (GrSi03) for more explanation of this aspect. Partly
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1.3 The Legendre transform 9

because of this recent resurgence of interest, we provide some detailed math-
ematical explanations of the Legendre transform in an invariant fashion. After
that, we will return to the Hamiltonian formulation of the classical mechanics.

1.3.1 The Legendre transform of a function

Let V be a (finite-dimensional) vector space and V∗ its dual vector space. We
denote by 〈 , 〉 the canonical paring between V and V∗.

Definition 1.3.1 Let U ⊂ V be an open subset. A function f : V → R is said
to be convex on U ⊂ V if it satisfies

f ((1 − t)x1 + tx2) ≤ (1 − t) f (x1) + t f (x2) (1.3.12)

for all t ∈ [0, 1] and for all x1, x2 ∈ U, and strictly convex if

f ((1 − t)x1 + tx2) < (1 − t) f (x1) + t f (x2) (1.3.13)

for all t ∈ (0, 1) and for all x1, x2 ∈ U.

The following is an easy exercise to prove.

Lemma 1.3.2
(1) Any convex function f on U is continuous on U.
(2) Any strictly convex function f : V → R that is bounded below has the

unique minimum point if it has one.

Example 1.3.3 Let V = R and consider the function f (x) = xα/αwith α > 1.
Then f is convex on R.

For a given function f : V → R, we consider the function F : V × V∗ → R
defined by

F(x, p) := 〈x, p〉 − f (x)

and the value

g(p) = sup
x∈V

F(x, p). (1.3.14)

The new function g, if defined, is called the Legendre transform or the Fenchel
transform.

In general, the value of g need not be finite. However, whenever the value is
defined, we have the inequality

〈x, p〉 ≤ f (x) + g(p), (1.3.15)
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10 The least action principle and Hamiltonian mechanics

which is called the Fenchel inequality. To make the value of g finite every-
where, one needs to impose the following superlinearity of f .

Definition 1.3.4 Let V be a (finite-dimensional) vector space. A function f :
V → R is said to be superlinear, if f is bounded below and

lim
|x|→∞

f (x)
|x| = +∞. (1.3.16)

Exercise 1.3.5 Prove that the superlinearity in this definition is equivalent to
the statement that, for all K < ∞, there exists C(K) > −∞ such that f (x) ≥
K|x| +C(K) for all x ∈ V .

An example of a convex but not superlinear function is f (x) = e−x as a
function on V = R.

We borrow the following from Proposition 1.3.5 of Fathi’s book (Fa05)
restricted to the finite-dimensional cases.

Proposition 1.3.6 Let f : V → R be a function. Then the following apply.

(1) If f is superlinear, then g is finite everywhere.
(2) If g is finite everywhere, it is convex.
(3) If f is continuous, then g is superlinear.

Proof We first prove (1). By the superlinearity (1.3.16) and Exercise 1.3.5,
there exists a constant C = C(|p|) such that f (x) ≥ |p||x| + C(|p|) for all x ∈ V .
Therefore we have

〈x, p〉 − f (x) ≤ |x||p| − f (x) ≤ |x||p| − (|x||p| +C(|p|)) = −C(|p|) < ∞.

This proves g(p) = supx∈V (〈x, p〉 − f (x)) < ∞. On the other hand, we have

g(p) = sup
x∈V

(〈x, p〉 − f (x)) ≥ − f (0) > −∞,

which proves (1). For the property (2), we note that g is the upper bound for
the family of linear functions, which is obviously convex,

p �→ 〈x, p〉 − f (x),

and hence g must be convex. To show (3), we will apply Exercise 1.3.5. For
any K, we derive

g(p) ≥ sup
|x|=K

〈x, p〉 − sup
|x|=K

f (x)
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