FLUID DYNAMICS

This book presents a focused, readable account of the principal physical and mathematical ideas at the heart of fluid dynamics. Graduate students in engineering, applied mathematics, and physics who are taking their first graduate course in fluids will find this book invaluable in providing the background in physics and mathematics necessary to pursue advanced study.

The book includes a detailed derivation of the Navier-Stokes and energy equations, followed by many examples of their use in studying the dynamics of fluid flows. Modern tensor analysis is used to simplify the mathematical derivations, thus allowing a clearer view of the physics. Peter S. Bernard also covers the motivation behind many fundamental concepts such as Bernoulli’s equation and the stream function.

Many exercises are designed with a view toward using MATLAB or its equivalent to simplify and extend the analysis of fluid motion, including developing flow simulations based on techniques described in the book.

Peter S. Bernard has 35 years’ experience teaching graduate-level fluid mechanics at the University of Maryland. He is a Fellow of the American Physical Society and Associate Fellow of the American Institute of Aeronautics and Astronautics. In addition to his many research articles devoted to the physics and computation of turbulent flow, he is the coauthor of the highly regarded volume *Turbulent Flow: Analysis, Measurement, and Prediction.*
Fluid Dynamics

Peter S. Bernard
University of Maryland
To my wife, Susan Bradshaw Sullivan
Contents

 Preface page xi
 1 Introduction ... 1
 1.1 What Is a Fluid? 1
 1.2 Molecular Structure and the Continuum Hypothesis 1
 1.3 Dilatation and Vorticity 4
 1.4 The Big Picture 5
 1.5 Vector and Tensor Analysis 7
 1.5.1 Vectors 8
 1.5.2 Tensors 9
 1.5.3 Skew Tensors 10
 1.5.4 Gradient Tensor 11
 1.5.5 Basis Vectors and Change of Coordinates 12
 2 Eulerian and Lagrangian Viewpoints, Paths, and Streamlines 15
 2.1 Eulerian versus Lagrangian Viewpoints 15
 2.2 Fluid Particle Paths 15
 2.3 Curves 18
 2.4 Streamlines 21
 3 Stream Function ... 24
 3.1 Two-Dimensional Planar Flow 24
 3.2 Axisymmetric Flow 30
 4 Helmholtz Decomposition .. 36
 4.1 Three-Dimensional Flow 36
 4.2 Bounded Domains 38
 4.3 Two-Dimensional Flow 40
 5 Sources, Sinks, and Vortices ... 44
 5.1 Sources and Sinks in Two Dimensions 44
 5.2 Point Vortices 46
Contents

5.3 Accommodating Boundaries in Two Dimensions 48
5.4 Sources and Sinks in Three Dimensions 51

6 **Doublets and Their Applications**
 6.1 Three-Dimensional Source/Sink Doublet 57
 6.2 Doublets in Two Dimensions 61

7 **Complex Potential**
 7.1 Connection to Complex Analysis 65
 7.2 Flows Derived from a Power Law 67
 7.3 Forces in 2D Potential Flows 71
 7.4 Inviscid Flow Past a Cylinder 75

8 **Accelerating Reference Frames**
 8.1 Orientation 83
 8.2 Position Vector 85
 8.3 Velocity 86
 8.4 Acceleration and Fictitious Forces 89

9 **Fluids at Rest**
 9.1 Forces in a Fluid at Rest 91
 9.1.1 Micromanometer 94
 9.1.2 Force on a Dam 95
 9.2 Buoyancy 96
 9.3 Accelerating Fluids at Rest 97
 9.3.1 Accelerating Fish Tank 98
 9.3.2 Rotating Bucket 99

10 **Incompressibility and Mass Conservation**
 10.1 Some Useful Mathematics 104
 10.2 Incompressibility 106
 10.3 Mass Conservation 107

11 **Stress Tensor: Existence and Symmetry**
 11.1 Existence of the Stress Tensor 110
 11.2 Symmetry of the Stress Tensor 112

12 **Stress Tensor in Newtonian Fluids**
 12.1 Relative Fluid Motion at a Point 116
 12.2 The Stress Tensor 120

13 **Navier-Stokes Equation**
 13.1 Rate of Change of Momentum 126
 13.2 Surface Forces 127
 13.3 The Navier-Stokes Equation 128
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Thermodynamic Considerations</td>
<td>131</td>
</tr>
<tr>
<td>14.1</td>
<td>Overview</td>
<td>131</td>
</tr>
<tr>
<td>14.2</td>
<td>First Law of Thermodynamics</td>
<td>132</td>
</tr>
<tr>
<td>14.3</td>
<td>Perfect Gases</td>
<td>137</td>
</tr>
<tr>
<td>15</td>
<td>Energy Equation</td>
<td>140</td>
</tr>
<tr>
<td>16</td>
<td>Complete Equations of Motion</td>
<td>147</td>
</tr>
<tr>
<td>16.1</td>
<td>Differential Equations of Fluid Flow</td>
<td>147</td>
</tr>
<tr>
<td>16.2</td>
<td>Bernoulli Equation</td>
<td>148</td>
</tr>
<tr>
<td>16.2.1</td>
<td>Bernoulli Equation for Steady Flow</td>
<td>149</td>
</tr>
<tr>
<td>16.2.2</td>
<td>Bernoulli Equation for Nonsteady Flow</td>
<td>151</td>
</tr>
<tr>
<td>16.2.3</td>
<td>Crocco's Relation</td>
<td>152</td>
</tr>
<tr>
<td>16.3</td>
<td>Control Volume Equations</td>
<td>153</td>
</tr>
<tr>
<td>16.3.1</td>
<td>Mass Conservation</td>
<td>153</td>
</tr>
<tr>
<td>16.3.2</td>
<td>Momentum Conservation</td>
<td>154</td>
</tr>
<tr>
<td>16.3.3</td>
<td>Conservation of Angular Momentum</td>
<td>157</td>
</tr>
<tr>
<td>16.3.4</td>
<td>Conservation of Energy</td>
<td>158</td>
</tr>
<tr>
<td>17</td>
<td>Applications of Bernoulli’s Equation and Control Volumes</td>
<td>160</td>
</tr>
<tr>
<td>17.1</td>
<td>Fluid Impinging on a Plate</td>
<td>160</td>
</tr>
<tr>
<td>17.2</td>
<td>Draining a Tank</td>
<td>165</td>
</tr>
<tr>
<td>17.3</td>
<td>Water Sprinkler</td>
<td>168</td>
</tr>
<tr>
<td>18</td>
<td>Vorticity</td>
<td>173</td>
</tr>
<tr>
<td>18.1</td>
<td>Vorticity Equation</td>
<td>173</td>
</tr>
<tr>
<td>18.2</td>
<td>Vortex Stretching and Reorientation</td>
<td>175</td>
</tr>
<tr>
<td>18.3</td>
<td>Kelvin’s Circulation Theorem</td>
<td>178</td>
</tr>
<tr>
<td>18.4</td>
<td>2D Vortex Methods</td>
<td>180</td>
</tr>
<tr>
<td>18.5</td>
<td>Simulation of a Wing Wake</td>
<td>183</td>
</tr>
<tr>
<td>19</td>
<td>Applications to Viscous Flow</td>
<td>188</td>
</tr>
<tr>
<td>19.1</td>
<td>The Reynolds Number</td>
<td>188</td>
</tr>
<tr>
<td>19.2</td>
<td>Unidirectional Flow</td>
<td>190</td>
</tr>
<tr>
<td>19.3</td>
<td>Flow in a Narrow Gap</td>
<td>191</td>
</tr>
<tr>
<td>19.4</td>
<td>Stokes Flow Past a Sphere</td>
<td>194</td>
</tr>
<tr>
<td>19.4.1</td>
<td>Problem Formulation</td>
<td>195</td>
</tr>
<tr>
<td>19.4.2</td>
<td>An Equation for the Stream Function</td>
<td>195</td>
</tr>
<tr>
<td>19.4.3</td>
<td>Solution for Stokes Flow</td>
<td>196</td>
</tr>
<tr>
<td>19.4.4</td>
<td>Forces on the Sphere</td>
<td>199</td>
</tr>
<tr>
<td>19.4.5</td>
<td>Self-Consistency of the Solution</td>
<td>200</td>
</tr>
<tr>
<td>19.5</td>
<td>Motion of a Sphere at Higher Reynolds Numbers</td>
<td>201</td>
</tr>
<tr>
<td>20</td>
<td>Laminar Boundary Layers</td>
<td>211</td>
</tr>
<tr>
<td>20.1</td>
<td>Boundary Layer Scaling</td>
<td>212</td>
</tr>
<tr>
<td>20.2</td>
<td>Blasius Boundary Layer</td>
<td>214</td>
</tr>
<tr>
<td>20.3</td>
<td>Falkner-Skan Boundary Layers</td>
<td>221</td>
</tr>
</tbody>
</table>
Contents

21 Some Applications to Convective Heat and Mass Transfer 225
 21.1 A Thermal Boundary Layer .. 225
 21.2 Monte Carlo Schemes for Modeling Convective Diffusion 229
 21.2.1 Probabilistic Interpretation of Diffusion 229
 21.2.2 Monte Carlo Model of Diffusion 230
 21.2.3 Monte Carlo Simulation Including Convection 232
 21.2.4 Monte Carlo Solution to a Thermal Boundary Layer ... 233

APPENDIX A: Equations in Curvilinear Coordinates 239
 A.1 Polar Coordinates .. 239
 A.2 Cylindrical Coordinates ... 240
 A.3 Spherical Coordinates .. 240

APPENDIX B: Tensors ... 242
 B.1 Divergence of a Tensor .. 242
 B.2 Vector Cross ... 243
 B.3 Principal Directions .. 244

Bibliography ... 247

Index ... 249
Preface

This book is inspired by a graduate-level course in fluid dynamics that I have taught at the University of Maryland for many years. The typical student taking this course, which is the starting point for graduate studies in fluid mechanics, has had one undergraduate course on fluids and a limited exposure to vector and tensor analysis. Consequently, the goal of this book is to provide a background in the physics and mathematics of fluid mechanics necessary for the pursuit of advanced studies and research at the graduate level. It is my experience that an effective route to these objectives is via a synthesis of the best features of two very excellent books, namely, *An Introduction to Fluid Dynamics* by George Batchelor, which presents the physics of fluid mechanics with exceptional clarity, and *An Introduction to Continuum Mechanics* by M. E. Gurtin (and now expanded and revised as *The Mechanics and Thermodynamics of Continua* by Gurtin, Fried, and Anand), which demonstrates the advantages of direct tensor notation in simplifying the expression of physical laws. Thus, to a large extent, this book combines the physics of Batchelor with the mathematics of Gurtin. The hope is that, in this way, an environment is created that helps make the subject of fluid dynamics clear, focused, and readily understandable. As a practical matter, this book should serve as an effective stepping-stone for new graduate students to enhance their accessibility to the books by Batchelor and Gurtin as well as those by many others.

Stylistically, this book follows an arc through the material that builds steadily toward the derivation and then application of the Navier-Stokes equations. The sequence of topics is also chosen so as to provide some significant exposure to examples of fluid flow and problem solving, before a relatively long and unavoidable set of chapters that deal in detail with the derivation of the flow equations. Most of what is in this book is covered in a one-semester course at Maryland, and no attempt is made to provide the depth of topics covered by Batchelor or Gurtin nor the comprehensive treatment of the subject matter typically found in other advanced textbooks. After studying this book, it is hoped that students will be well prepared to venture in any number of directions into more specialized and advanced topics in fluid dynamics.

Among the topics in the book, some represent a review of subjects normally encountered in undergraduate fluids courses (e.g., Chapter 9, on fluids at rest). This is intended to keep the book self-contained, to aid in the review of this material and
as a needed introduction to these topics for the occasional applied math or other nonengineering student who has never previously studied fluid mechanics.

The problems at the end of the chapters attempt to reflect the graduate level of the book by pursuing directions that are often somewhat challenging rather than repeating the formulaic engineering problems that are traditional to the undergraduate curriculum. For many of the problems, students are strongly encouraged to take full advantage of high-order computer languages such as MATLAB to help derive relations via symbolic manipulation, to solve algebraic and differential equations, and to calculate and plot numerical results. For example, in the case of MATLAB, facility with using commands such as `diff`, `int`, `solve`, `dsolve`, `subs`, `ode45`, and `bvp4c` greatly reduces the labor necessary to solve many problems in this book. In some cases, without the power of the symbolic solvers, the difficulty in obtaining solutions can be quite formidable if attempted with pencil and paper.

Some of the material in the book is specifically designed to be a launching point for writing computer code (e.g., with MATLAB) that solves interesting flow problems and displays results in the form of animations. Such material includes Sections 18.4 and 18.5, on the discrete vortex method; Section 19.5, on the motion of a sphere and other bodies; and Section 21.2, on the use of the Monte Carlo method for simulating scalar transport in fluid flows. In each of these cases, the numerical simulations can be carried out with a modest investment in programming yet bring to life intriguing aspects of fluid flow.

The author would like to express his great appreciation to Professor Bruce Berger for his many contributions toward improving the quality and clarity of the exposition in this book. I also appreciate the insights of Carl Biagetti of the Space Telescope Science Institute and graduate student Eric Leonard in reading some of the chapters.