Index

acceleration, 29, 46–48, 69, 93, 139
of gravity, 93, 152, 161, 264
accelerometers, 109, 114
active constraints, 214
actual flight time approximation ballistic guidance, 165–167
actual state vectors, 2
adherence property (of the supremum), 24, 196
adjoint vectors, 14, 37–39, 46, 137, 142–143, 147, 167–169, 183, 263
equation, 38
state transition matrix, 38
aerospace mission, 6, 289
aileron deflection, 18, 46, 115
altitude, 20, 150, 154, 171, 218
angular momentum, law of, 18
angular velocity, 94–97, 111, 170
vectors, 178, 225, 278
Apollonius Circle Theorem, 273–275
approximate miss distance analysis homing guidance, 124–126
argument at periapse, 227
asteroid, 197–198
asymptotically stable, 22–23
asymptotic observer, 96–100, 108
attitude control, 6
autopilot, 7, 130, 132–135, 137, 141, 144, 147, 241, 281
backward dynamic programming optimality, 246, 249–250
ballistic flight, 151, 161, 164, 171, 173, 176–178
ballistic guidance, 150–186
dynamics, 175
mechanizing, 170
stages of, 150
ballistic missile, 7, 96, 112, 175, 186, 197
ballistic optimization, defined, 199
ballistic projectile, 26
ballistic shots
least energetic, 156, 159, 211
most accurate, 159, 162
barrier, 281
beam attack, 147–148
beam rider homing guidance, 120, 144–146
bearing, 114–115
fixes, 79–80
measurement, 88–89
Bellman equation, 248–249, 251, 254, 261
functional, 251
Bellman-Isaacs equation, 275–276, 280–281, 289
functional, 276
Bellman equation, 248–249, 251, 254, 261
functional, 251
Bellman-Isaacs equation, 275–276, 280–281, 289
functional, 276
block diagram, 3–4, 93, 96, 170, 194, 196
Bolza Problem, 224
bound, 3, 23, 25
upper and lower, 296–297
boundary, 118
boundary conditions, 124, 217, 223, 230–231, 233–234, 239, 242, 244, 252, 254, 283
bounded (boundedness), 22–24, 103
bounded signal, 24
bounded-input, bounded-output (BIBO) stable systems, 24–25, 34–35, 195
box product, 172
brachistochrone problem, 263, 286
bullet, 26
bundle, 81, 155–157, 161, 163, 234, 268
calculus of variations, 234
calibration, 82
cannonball, 74, 161, 176
capture, 271, 277, 279–281, 287
Cartesian coordinates, 51, 133–134, 286, 288
time-dimensional, 15
causal vs. anticipatory (noncausal) systems, 4
characteristic function, 57–59
characteristic polynomial (of state matrix), 99–100
circular cone, 89, 91, 113
circular position fixing, 89–91
closed ball, 295–296
closing speed, 282
Index

collision course, 120–121, 129, 132, 147
compact, 296
set, 233
completely controllable system, 40–41
completely observable system, 27, 44, 116
conditional probability, 51, 56–57, 72
conic fix, 80, 89, 111
conic section, 154
constant bearing, 289
homing guidance, 120, 129–130, 145, 289
midcourse guidance, 187
principle, 120
constrained optimization, 156, 199–213, 219, 258, 288
continuous-time dynamic programming optimality, 246, 250–252
control, 5
controller, endogenous, exogenous, 5
taxonomies of, 224
control action input vectors, 14
control display unit (CDU), 7
controllability, 38–43
Gramian, 41–42, 230–231, 288
controllable state, 40
coordinate transformation, 95
correlation coefficients, 59
cost functional, 223, 229, 242–244, 248–249, 253, 255, 258, 260, 281
time varying, 281
zero-sum, 282–283
e-state equations, 217, 231–232, 235, 244, 280, 283
dynamic optimality, 230
dynamic vectors, 257
cost-to-go dynamic programming optimality, 246–247, 254, 258, 260
covariance
coordinate error, 81
differentiable, 66
kernel random process, 63–64
matrix, 57–58
cross-covariance
kernel random process, 64
matrix, 57, 64
cross-product (Q-) midcourse guidance, 187
cross-range miss ballistic guidance, 166
cross-range miss distance, 165, 167, 169
cutoff condition, 154–159
perturbation, 159
cylindrical coordinates ballistic guidance, 177
dead-reckoning, 93
DECCA hyperbolic fixing system, 89–91
delta-guidance midcourse sets, 187, 191–193
density function conditional probability, 55, 81
density probability functions, 52–53
conditional, 55–57
joint, 52
marginal, 55–56
reasons for use of, 59
deterministic separation principle, 195, 288
deterministic systems, 14–47
vs. stochastic systems, 5
differentiable functions, 43, 46, 201, 204–205
differentiable vector, 275
differential element of length, 81, 83
differential games, 269–287, 270
control, 271
policy, 271
strategy, 271
dimensionality, curse of, 247
dimensionless time-to-go, 135, 138–139, 143
Dirac delta functions, 53
direction cosine matrix, 96
discount factor, 283
discrete-time systems, 215–217
dispersal line, 281
Distance Measuring Equipment (DME), 89
distributions, 51–57
dolichobrachistochrone problem, 286
dominance, 271
boundary and region, 275
Doppler effect, 109
double integrator optimal controls, 225, 238–242
down-range miss ballistic guidance, 167–169
duality, 38–43
dynamic decision problem, 235
dynamic observer, 106
dynamic programming
fundamental equation of, 249, 251
optimality, 246–248, 249–259
fundamental principle of, 249–250
imbedding, 250
maximum principle and, 256–258, 259–262
dynamic response, 7
dynamic systems, 265–266
earth, 170–174
eccentricity, 227
oblateness and geophysical uncertainties of, 174
perturbations of, 175
ecliptic plane, 80
effective exhaust velocity, 212
effective navigation constant, 133, 241
eigenvalue, 33–34, 37
eigenvector, 33–34, 37
Einstein’s Equivalence Principle, 93
electromagnetic beam, 120, 144
elevation, 20–21
apparent, 91, 145
ellipsoid of probability, 61, 87–88
engineering synthesis optimization, 200
ensemble, 62, 66
ephemerid tables, 91
equality constraints, 199
equivalence class, 24
equivocal line, 281
error analysis ballistic guidance
 in-plane, 158–163
 three-dimensional, 163–166
error analysis position fixing, 80
escape problem homing guidance, 119
estimated guidance error, 3, 194
 estimated state vector, 2
Euclidian norm, 24
Euler parameters, 96
Euler-Lagrange equation, 235
evasion (optimal), 241–242
events, 49–50, 52
 certain, 49
 mutually exclusive, 50–51
 statistically regular, 49
exact distance analysis homing guidance miss,
 126–129
expected square miss, 160–162, 197
expected values, 57–59
extremal arc, 230, 234
feedback, 255
fixed lead bearing, 121
fixed lead homing guidance, 120, 129
Flight Management System (FMS), 6–7
flight path angle, 20–21, 145, 158, 163
flight termination condition, 175–177, 179
flight termination condition ballistic guidance, 175
 force, 4, 25, 212, 225, 227
 aerodynamic, 150, 160, 175
 applied, 15
 gravitational and inertial, 93, 114
 orbital, 179
 per unit mass, 17–18
forced response, 23–24
formalism, 59
Fourier transform, 58, 66
fractionals, 222–225
free flight, 150, 171, 175
free response, 23, 25, 27, 63
full information games, 271
functional, 222–223, 250, 270
 linear operator, 40
 optimizing, 248
 performance index, 223
 sampling and integral, 223
 scalar, 234
 space, 202
Fundamental Axiom of Analysis, 297
game theory, 269, 285
games
 of degree, 270
 of kind, 270–271
taxonomy of, 269–272
value of, 270
Gamma function, 61
Gaussian (normal) distribution, 59
Gaussian (normal) random process, 58–61, 67, 104
 colored, 67, 141
distribution, 48, 58–62
 joint, 60
 white, 67, 196
Gauss-Markov random process, 67–68, 69,
 100–101, 104, 195–196, 255
 standard, 69–70
geodesy, 93
geometry, 2, 6, 79
 analytic, 51, 153
 Apollonius circle, 273
 beam rider, 144
 down-range miss, 167
 earth’s rotational, 171
 launch error miss, 136
 linearized proportional navigation, 131
 noise miss, 140
 planar homing, 118–119
 restricted two-body, 152
geophysical uncertainties, 174
geosynchronous vs. sun synchronous orbits, 9
gimbal, 94, 115
global minimum, 200, 205
Global Navigation Satellite System (GLONASS), 92
Global Positioning System (GPS), 6, 92–93
differential, 92–93
goniometers, 108
 gravitational constant, 152, 179, 190, 209
greedy strategy, 235
ground station, 92–93
guidance, 6
 defined, 1
 errors, 2–3
 hardware, 111
guidance law, 3, 14, 21, 129–130, 189–190, 192,
 197, 255–256, 281, 285
 guided approach, 20
 guided landing, 20
 gyroscopes, 111
 integrating, 115
 rate, 115
 rigidity and, 113
 single- and two-degree of freedom, 115
 gyroscopic rigidity, 111, 113
Hamiltonian, 229–230, 232, 234, 239, 241, 252, 257,
 260, 283–284, 289
Hamilton-Jacobi-Bellman equation, 258, 261
 heading angle, 46, 115, 119, 130, 147–148, 226–227,
 272, 276–277, 280
 heat-seeking homing missile, 7
 Hessian matrix, 203–204, 208, 210
 hit equations, 155
 linearized, 156
 homing guidance, 118–149, 281–285
 fundamental equations of, 67, 119, 127–128
 fundamentals of, 118–121
 planar, 118–121
 terminal phase analysis of, 123–124
 types of, 118
INDEX

H.O.T. (higher-order terms), 16–17
hyperbolic fix, 80, 89
hyperbolic position fixing, 89
hyperboloid of revolution, 91
ideal rocket equation, 212
Imbedding Principle, 250
impact time, 166
Implicit Function Theorem, 121, 159, 206, 212, 218, 288
impulse response, 23–24, 26, 37, 135–136
impulsive burn, 9, 12
inclination, 227
independence, 59
induced norm, 24
inequality, 195
static system, 288
inequality constraints, 214, 218, 277
inertial acceleration, 116
inertial frame, 15, 93, 152, 178
inertial navigation, 7, 78, 93–97, 100, 111
Inertial Navigation System (INS), 93, 93–94, 94–95, 95–98
inertial space, 94
infimum, 296–297
information structure, 271
information structure games, 271
input, 3–4
bounded, 225
control, 5, 188, 191, 222–224, 233
exogenous and endogenous, 269
Gaussian stochastic, 48, 69–72
matrix, 17
random, 12, 71
spring system (force), 4
target lateral displacement, 133
vector, 14, 23
Instrument Landing System (ILS), 145–146
integral functional, 223
intercept, 141–144, 272, 283
head-on, 121, 123
International Civil Aviation Organization (ICAO), 88
interplanetary travel, 10, 10–12, 12
inversion formulas, 58
Jacobian matrix, 17, 80–81, 83, 205
jinking, 139, 241–246, 289
joint probability density function, 52, 55, 59, 67, 74
jointly Gaussian distributed vectors, 60
juicing, 244–246
Kalman filter, 100–106, 193, 232, 255
extended (EKF), 105–108
Karush-Kuhn-Tucker (KKT) conditions, 214–215
Keplerian orbit, 173
kinematics of rotations, 95
kinetic energy, 150, 156, 209
Kummer function, 133–134
Lagrange multiplier, 150, 163, 206–209, 211, 213, 216–217, 224, 288
Lagrange Problem, 224
Lagrange’s theorem, 206
Laplace transform, 71
differentiation rule, 31
inverse, 31
lateral acceleration, 147, 241–243, 281–282
launch error homing guidance miss, 129, 135–138
law of angular momentum, 18
law of similarity in triangles, 272
lead angle, 129
Legendre polynomial, 174
Leibniz’s rule, 71
lift-to-drag ratio, 211
likelihood function, 84, 85
maximum, 84, 86
linear dynamic state transition matrix, 22
linear dynamic systems, 28–29
observability and, 27
properties of, 21–26
linear functional operator, 40
linear quadratic gaussian (LQG) regulator, 224, 255–256, 262
linear quadratic regulator (LQR), 193, 252–255, 262
linear time invariant state transition matrix, 31–32
linear time invariant systems, 30–32, 34–37
linear time varying systems, 4, 39, 62, 98–99, 130, 133, 224, 281
forced response, 23
linear transformations, 59
linear vs. nonlinear systems, 4
linearization, 14–21
linearized hit equation, 40
linearized proportional navigation, 130
linearly independent, 21, 33, 214, 297–299
line-of-sight (LOS)
angle, 118–119, 121, 126, 133, 144, 147, 282, 284
turn rate, 285
local minimum, 200
local similarity, 289
Long Range Navigation (LORAN), 89–91
longitude of the ascending node, 227
low-thrust propulsion orbital path-planning, 227–228
lumped parameter (vs. distributed parameter)
systems, 4–5
Lyapunov equation, 70, 196, 232
marginal probability density function, 55, 66
Markovian nonlinear model, 105
Markovian random process, 67, 105
mass, 50
mass-spring systems, 4–5
matrices, 28–30
Mayer Problem, 224, 241–242
optimal control, 288
mean anomaly, 227
mean square error, 73, 81–82, 84, 87, 232
mean value, 57–58
 function of a random process, 63–68, 70, 74, 196
mean values, 57
measure zero, 23, 52, 295
measured output, 5, 255
controls, 5
mechanization of the guidance scheme, 170
meridional miss, 179
midcourse guidance, 189–198
 assumptions of, 187
 methods of, 187
navigation with, 187, 193–196
minimax, 270
miss analysis ballistic optimization, 181–184
miss analysis problem, 176
miss ballistic guidance, 176
miss coefficient, 160–162, 168, 174, 178
miss distance, 14, 123–129, 133, 135–141, 159, 165,
 167–170, 170, 175, 176, 181, 183, 242
 missile velocity, 119, 126, 149
 reference and actual, 130–131
momentum wheel, 95
most accurate ballistic shot, 160
motion equation for conventional guided
 approach, 20–21
motion equations, 163
natural science (fundamental postulate of), 48
navigation, 2, 6, 78–117
 defined, 1
 hardware, 108–111
 purposes of, 72
NAVSTAR Global Positioning System, 92
necessary condition
 maximum principle, 246
 optimality, 214, 217, 228–230, 234, 239, 241,
 243–244, 249, 261, 276, 281
 dynamic, 206
 first-order, 85–86, 199, 207, 209–210, 254
 second-order, 208
 twice-differentiable functions open sets, 204
 negative definite, 208, 300
 neighborhood, 85, 296, 302
 open, 200, 301
Newton’s equations of motion, 15, 173, 178–179,
 204
Newton’s iteration, 180, 208, 301–302
Newton’s method, 301
Newton’s theorem, 301
nilpotent matrix, 32
noise homing guidance miss, 140–141
noisy acceleration measurement, 103
nominal interception time, 142
nominal orbit, 164, 177
nonconvex sets, 202
nonlinear dynamic systems, 14–21
nonlinear estimation, 106
nonrotating planet ballistic guidance, 176
norm, 23–24
normal random vectors, 60
null space (null space), 28, 30, 298–299
objective function, 208–209, 222–223, 227, 258, 271, 288
observability, 26–30
 function, 42
 linear time invariant systems and, 35
 observable state systems, 27
open set, 204–205
optimal control, 267, 280
 beyond finite dimensionality, 222
 components of, 223
 defined, 222
 problem, 223–228, 255
 Lagrange, 234
 Mayer, 241, 288
 unconstrained, 230, 232
 zero-sum, 289
optimal cost-to-go, 247, 249, 254, 257–259
optimal evasion problem, 242
optimal guidance, 222–268
 optimal information collection path-planning,
 225–226
optimal policy, 254
optimality
 condition, 199, 230, 233, 235, 239, 243, 284
 equations, 217
 first-order, 207–209
 conditions for, 85–86, 254
 principle of, 248–249
 second-order, 208–210, 254
 conditions for, 85–86
 state dynamics, 230
optimizing guidance, 199–221
orbit determination, 9, 12
orbit equation, 154–155
orbital acceleration, 178
orbital elements, 9, 227
orbital maneuver, 9–10, 227
order reduction, 278–279
ordinary differential equations (ODEs), 4, 257
output, 3–4
 control theory, 5
 feedback, 224, 255
 matrix, 17
 measured (control theory), 5
 spring system (deformation), 4
 vector, 14
parabolic distribution, 54–56
parallel miss, 179
partial derivative, 16, 159, 180–181, 200–201, 259,
 280, 302
partial information games, 271
| particle, 15, 85, 150, 267 |
| free, 25 |
| path planning, 6 |
| performance criterion, 223 |
| index, 223, 230, 232 |
| output control, 5 |
| periapse, 198, 227 |
| pitch angle, 20 |
| planar homing guidance, 118–119 |
| planar navigation, 89 |
| platform, 94–95, 116 |
| Poisson differential equation, 95–96 |
| pole, 34–35, 99, 193, 195, 241 |
| assignment problem, 99 |
| double, 35 |
| policy, 224, 247 |
| versus control versus strategy, 271 |
| optimal, 250, 254 |
| Pontryagin’s maximum principle, 233–235, 234, 261, 289 |
| dynamic programming and, 256–262 |
| position, 2, 15, 26, 36, 69, 75, 178 |
| current, 46 |
| cutoff, 171 |
| final, 225 |
| fixing, 78–93 |
| initial, 25, 30, 63, 68, 187–188, 274 |
| relative, 119, 145 |
| position fixing (Newtonian method for), 80 |
| positive definite, 28, 35, 208 |
| symmetric, 81, 208, 210, 219, 300 |
| potential energy, 150 |
| power series, 141–144 |
| solution method, 31 |
| power spectral density, 66–67 |
| powered lift-off, 150 |
| principal axis of inertia, 18 |
| probability density function, 50, 52–61, 67–68, 71–72, 81, 84, 134 |
| function, 50–52, 56, 72 |
| space, 49–51, 51 |
| theory, 49 |
| proportional guidance/navigation, 120, 141 |
| game-theoretic view of, 281–285 |
| homing, 120, 129–130 |
| pursuit homing guidance, 120–123 |
| Pythagorean theorem, 83 |
| Q- (cross-product) midcourse guidance, 187, 189 |
| quadratic equation, 190, 266 |
| quadratic form, 86, 208, 300 |
| quaternions, 96 |
| \mathbb{R}^n optimization constrained, 205 |
| inequality constraints on, 214–215 |
| unconstrained, 200–205 |
| radius of curvature, 118, 124, 277, 300 |
| random process, 65 |
| random variable, 51–57, 60–61, 63–64, 73–74, 78, 139 |
| random vectors, 51–52 |
| indexed by time, 62 |
| range, 29, 74, 85, 99, 105, 107, 116, 119, 121, 130, 144, 161, 277, 299 |
| dimensionless, 126–128 |
| horizontal, 116 |
| initial, 131 |
| measurement, 89–90, 103 |
| space, 40 |
| rank, 37, 289, 298–299 |
| full, 35–36, 205, 219, 300 |
| rational function, 31, 33 |
| realization (sample function) processes, 62–63, 72, 141 |
| receiver, 92–93 |
| recursive navigation, 96–100 |
| redundant measurements position fixing, 84–87 |
| reentry trajectory, 154 |
| reference missile velocity, 131 |
| reference state vectors, 2 |
| regular points, 205 |
| relative derivative, 131 |
| relative velocity, 171 |
| relativity (general), 93 |
| remote-operator, 7 |
| repeatability, 49 |
| restricted two-body ballistic guidance, 150–154 |
| restriction preserving optimality, 248 |
| rheonomic (time varying) optimal controls, 224–225 |
| Ricatti differential equation, 102–105, 233, 255 |
| algebraic (ARE), 103 |
| nonlinear, 105 |
| rocket-staging, 150, 211–213 |
| n-stage, 212–213 |
| optimal, 213 |
| single- and two-stage, 212 |
| root-mean-square (RMS), 140–141 |
| rotating planet ballistic guidance, 178 |
| rotational motion, 18 |
| Routh-Hurwitz criterion, 100 |
| Sagnac effect, 111 |
| sample, 49–52, 105–106 |
| function, 62–63 |
| probability, 51 |
| space, 18, 49–51, 49–52 |
| sampling fractions, 223 |
| scleronomic (time invariant) optimal controls, 223–224 |
| second-order time invariant systems, 268 |
| seekers, passive (heat) and semi-passive (laser-guided smart bombs), 118 |
| semimajor axis, 227 |
sensitivity, 207, 258
sensor
 inertially stabilized, 94
output, 100
strapped down, 94–98
separation of variables, 121, 123, 254
separation property, 3
Shannon’s equation, 226
signal, 3, 24
signal-to-noise ratios, 103
single-input-single-output (double integrator)
free response, 63
velocity sensors and, 30
singular control, 234, 240
skew-symmetric, 43, 96
slewing, 18
small perturbation, 158, 289
smooth function, 200, 204, 257
solutions “in the large” and “in the small,” 230
spacecraft (orbital), 9
speed, 20, 86, 92, 130, 133, 212, 279
closing, 282
constant, 225–227, 268, 272, 276–277, 280
nominal, 285
ratio, 272, 274
sphere of influence, 197
spherical position fixing, 89
spindle torus, 89
spring systems, 4
square matrix, 74, 232, 298–300
stability. See systems, stable
stable state (and linear time invariant systems), 33–34
stable system, 22–23
standard deviation, 58, 84
state
dynamics equations, 230, 233, 283
feedback guidance, 187, 191–193, 196, 255
matrix, 17, 233
space, 27, 230, 241
transition matrix, 22–25, 27, 30–32, 68
uniformly exponentially bounded, 23
vectors, 14–21
static (memoryless) vs. dynamic systems, 4
static decision problems, 65–66, 235
static games, 270
stationary random processes, 65
mean and wide-sense, 66
statistical regularity, 5, 48
step target acceleration homing guidance miss, 138–139
step-target acceleration, 138–139
stochastic observability, 103
stochastic optimal control, 255
stochastic process, 62
stochastic realization problem, 72
stochastic separation principle, 256, 288
stochastic systems, 48–77
reasons to use, 48
structural coefficient, 212
subsidiary optimization, 208, 252
sufficient condition, 155, 199, 201–202, 205, 208,
261, 289
superposition principle, 4, 45, 61, 139, 194, 289
supremum, 24, 296–297
switching curve, 240–241, 259
switching envelope, 281
switching locus, 281
symmetric matrix, 27, 35–37, 232
symplectic structure, 222
synchronous games, 270
system, 3–4, 14
system dynamic equations, 223
systems, distributed parameter, 4
systems theory, 3–5
deterministic, 14–42
linear, 196
stochastic, 48–72
Tactical Air Navigation (TACAN), 89
tangent planes, 208–211
target set, 237–238
Rendez-Vous, 238
target sinusoidal motion homing guidance miss, 139–140
targeting
ballistic guidance, 176, 179–181
problem, 176
Taylor series expansion, 16, 81, 155, 201–202,
204
Taylor’s theorem, 201–204, 300
telemeter, 108
terminal guidance, 14, 118–119
terminal radius, 166, 190
terminal turning acceleration, 123, 123–124
terminal turning rate, 122, 124
termination time, 175, 181–182
nominal, 166, 181
three-dimensional error analysis, 163–170
three-dimensional navigation, 89
thrust acceleration, 44, 93, 94–96, 105–106, 109,
188, 196, 255, 264
thrust force, 15, 69
time constant, 133, 183, 190, 241
time varying co-state vectors, 288
time-to-impact, 147
torque, 15, 69, 191
actuator, 18
gravity, 114–115
trace, 74, 84, 101, 232
Tracking and Data Relay Satellite System (TDRSS), 10
trajectory, 6, 14, 123–127, 147–148
actual, 125
aerodynamic, 154
missile, 155–158, 161–164
phases of, 150
Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>optimal</td>
<td>240, 248–249, 250, 259</td>
</tr>
<tr>
<td>perturbed</td>
<td>167–168</td>
</tr>
<tr>
<td>polar coordinate</td>
<td>190</td>
</tr>
<tr>
<td>pursuit</td>
<td>6, 118, 120, 124–129, 126, 279</td>
</tr>
<tr>
<td>reentry</td>
<td>154–155</td>
</tr>
<tr>
<td>reference</td>
<td>130–131, 165</td>
</tr>
<tr>
<td>straight-line</td>
<td>119</td>
</tr>
<tr>
<td>time-optimal</td>
<td>119</td>
</tr>
<tr>
<td>transversality conditions</td>
<td>234, 236–238</td>
</tr>
<tr>
<td>transverse displacement</td>
<td>125</td>
</tr>
<tr>
<td>triple integrator</td>
<td>46, 115</td>
</tr>
<tr>
<td>true acceleration</td>
<td>75–76, 116</td>
</tr>
<tr>
<td>true anomaly</td>
<td>227</td>
</tr>
<tr>
<td>two-dimensional hit ballistic guidance</td>
<td>154–158</td>
</tr>
<tr>
<td>two-stage rocket equations</td>
<td>212</td>
</tr>
<tr>
<td>unconstrained optimal controls</td>
<td>40</td>
</tr>
<tr>
<td>uncontrollable state</td>
<td>40</td>
</tr>
<tr>
<td>uncorrelated random process</td>
<td>65</td>
</tr>
<tr>
<td>uncorrelated random vector</td>
<td>59</td>
</tr>
<tr>
<td>unicycle kinematics</td>
<td>272</td>
</tr>
<tr>
<td>uniformity</td>
<td>48</td>
</tr>
<tr>
<td>uniformly absolutely integrable</td>
<td>24, 26</td>
</tr>
<tr>
<td>uniformly distributed random vectors</td>
<td>53–54, 63–66, 72, 139</td>
</tr>
<tr>
<td>unit step input</td>
<td>133</td>
</tr>
<tr>
<td>universal gravitational constant</td>
<td>152</td>
</tr>
<tr>
<td>unmanned aerial vehicle (UAV)</td>
<td>6–7</td>
</tr>
<tr>
<td>unobservable state</td>
<td>27</td>
</tr>
<tr>
<td>variation of constants</td>
<td>23, 27, 32, 37, 39, 231</td>
</tr>
<tr>
<td>linear dynamic systems and, response</td>
<td>23</td>
</tr>
<tr>
<td>forced and free</td>
<td>23</td>
</tr>
<tr>
<td>impulse</td>
<td>23, 26</td>
</tr>
<tr>
<td>vector functions of time</td>
<td>23–24</td>
</tr>
<tr>
<td>equal almost everywhere</td>
<td>23–24</td>
</tr>
<tr>
<td>essentially equal</td>
<td>23–24</td>
</tr>
<tr>
<td>vector space</td>
<td>21, 27, 40, 297–299</td>
</tr>
<tr>
<td>vectrix (moving)</td>
<td>278–279</td>
</tr>
<tr>
<td>velocimeter</td>
<td>109</td>
</tr>
<tr>
<td>Doppler</td>
<td>109</td>
</tr>
<tr>
<td>velocity</td>
<td>15–16, 25–26, 30, 36, 69, 78, 80, 93, 105</td>
</tr>
<tr>
<td>absolute</td>
<td>278</td>
</tr>
<tr>
<td>angular</td>
<td>94–97, 111, 115, 170, 178, 278</td>
</tr>
<tr>
<td>constant known</td>
<td>107, 113–114, 147–148</td>
</tr>
<tr>
<td>cutoff</td>
<td>154, 156, 158, 171, 209</td>
</tr>
<tr>
<td>effective exhaust</td>
<td>212</td>
</tr>
<tr>
<td>fixed</td>
<td>147</td>
</tr>
<tr>
<td>horizontal</td>
<td>116</td>
</tr>
<tr>
<td>initial</td>
<td>161</td>
</tr>
<tr>
<td>launch</td>
<td>161, 163</td>
</tr>
<tr>
<td>pursuit</td>
<td>121–132, 280, 287</td>
</tr>
<tr>
<td>radial</td>
<td>44</td>
</tr>
<tr>
<td>ratio</td>
<td>121</td>
</tr>
<tr>
<td>relative</td>
<td>171</td>
</tr>
<tr>
<td>roll</td>
<td>115</td>
</tr>
<tr>
<td>step</td>
<td>132</td>
</tr>
<tr>
<td>tangential</td>
<td>44, 170</td>
</tr>
<tr>
<td>wind</td>
<td>49–50, 52, 63</td>
</tr>
<tr>
<td>velocity-to-be-gained midcourse guidance</td>
<td>188–191</td>
</tr>
<tr>
<td>limited and unlimited thrust</td>
<td>189–191</td>
</tr>
<tr>
<td>vertical acceleration</td>
<td>114</td>
</tr>
<tr>
<td>Very Large Scale Integration (VLSI)</td>
<td>111</td>
</tr>
<tr>
<td>VHF Omnidirectional Ranging Tactical Air Navigation (VORTEC)</td>
<td>89</td>
</tr>
<tr>
<td>VHF Omni-directional Ranging (VOR)</td>
<td>88–89</td>
</tr>
<tr>
<td>volume</td>
<td>50</td>
</tr>
<tr>
<td>waypoint</td>
<td>6–7</td>
</tr>
<tr>
<td>weighing pattern (impulse response)</td>
<td>196</td>
</tr>
<tr>
<td>white noise</td>
<td>105</td>
</tr>
<tr>
<td>wide-sense stationary</td>
<td>66</td>
</tr>
<tr>
<td>zero initial condition linear dynamic systems</td>
<td>37</td>
</tr>
<tr>
<td>zero-sum differential games</td>
<td>269–270</td>
</tr>
</tbody>
</table>