PROTECTIVE MEASUREMENT AND QUANTUM REALITY

Protective measurements offer an intriguing method for measuring the wave function of a single quantum system. With contributions from leading physicists and philosophers of physics – including two of the original discoverers of this important method – this book explores the concept of protective measurement, investigating its broad applications and deep implications.

Addressing both physical and philosophical aspects, it covers a diverse range of topics, including the experimental possibility of protective measurements, connections with the PBR theorem, and the implications of protective measurement for understanding the nature of quantum reality. Including a clear and concise introduction to standard quantum mechanics, conventional measurement, and the fundamentals of protective measurement, this is a valuable resource for graduate students and researchers interested in the conceptual foundations of quantum mechanics.

SHAN GAO is an Associate Professor at the Institute for the History of Natural Sciences, Chinese Academy of Sciences. His research focuses on the foundations of quantum mechanics and the history of modern physics.

PROTECTIVE MEASUREMENT AND QUANTUM REALITY

Towards a New Understanding of Quantum Mechanics

SHAN GAO Chinese Academy of Sciences

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107069633

© Cambridge University Press 2014

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2014

Printed in the United Kingdom by Clays, St Ives plc

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data Protective measurement and quantum reality : toward a new understanding of quantum mechanics / edited by Shan Gao, Chinese Academy of Science.

pages cm.

Includes bibliographical references and index. ISBN 978-1-107-06963-3 (Hardback)

Quantum theory.
Physical measurements.
I. Gao, Shan, 1970 or 1971- editor, author.

QC174.13.P76 2014

530.12-dc23 2014021791

ISBN 978-1-107-06963-3 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

To my parents

Contents

	List of (Preface	Contributors	<i>page</i> xi xiii	
	Acknowledgements			
1	Protective measurement: an introduction			
	SHAN GAO		1	
	1.1	Standard quantum mechanics and impulsive measurement	1	
	1.2	Weak measurement	3	
	1.3	Protective measurement	5	
	1.4	Further discussion	9	
Pa	rt I Fu	ndamentals and applications	13	
2	Protecti	ve measurement of the wave function of a single system		
	LEV VAID	IAN	15	
	2.1	Introduction	15	
	2.2	Why I think that the quantum wave function describes a		
		single quantum system (and everything else)	16	
	2.3	What is and what is not measurable using protective		
		measurement	18	
	2.4	The methods of protective measurements and the		
		information gain	19	
	2.5		21	
	2.6	Critique of protective measurement	24	
3	Protective measurement, postselection and the Heisenberg			
	representation			
	YAKIR AH	28		

ambridge University Press
78-1-107-06963-3 - Protective Measurement and Quantum Reality: Towards a New Understanding
f Quantum Mechanics
han Gao
rontmatter
Iore information

viii		i	Contents	
		3.1	Introduction	28
		3.2	Classical and quantum ergodicity	29
		3.3	Protective measurement in the Schrödinger	
			and Heisenberg representations	30
		3.4	Statistical mechanics with two-state vectors	35
		3.5	Discussion	36
	4	Protecti	ive and state measurement: a review	
		GENNARO	AULETTA	39
		4.1	Introduction	39
		4.2	Measurement in general	40
		4.3	Quantum non-demolition measurement	45
		4.4	Protective measurement of the state	50
		4.5	Measurement and reversibility	53
		4.6	Quantum state reconstruction	54
		4.7	Unsharpness and negative quasi-probabilities	59
		4.8	Conclusion	60
	5	Determ	ination of the stationary basis from protective measurement on a	
		single s	ystem	
		LAJOS DIO	ŚSI	63
		5.1	Introduction	63
		5.2	Joint protective measurement of several observables	64
		5.3	Protective measurement of the stationary basis	66
		5.4	Summary	67
6 Weak meas		Weak n	neasurement, the energy-momentum tensor and the Bohm	
		approach		
		ROBERT F	FLACK AND BASIL J. HILEY	68
		6.1	Introduction	68
		6.2		72
		6.3	Bilinear invariants	80
		6.4	Weak measurements with photons	82
		6.5	Conclusions	86
	Pa	rt II N	Aeanings and implications	91
7 Measurement and metaphysics		ement and metaphysics		
		PETER J.		93
		7.1	Introduction	93
		7.2	Bohm's theory	95
		7.3	Contextual properties	97

Cambridge University Press	
978-1-107-06963-3 - Protective Measurement and Quantum Reality: Towards a New Understandin	g
of Quantum Mechanics	
Shan Gao	
Frontmatter	
More information	

		Contents	ix
	7.4	Ensemble interpretations	100
	7.5	Ensemble properties and individual properties: a blurring of	100
		the lines	103
8	Protecti	ve measurement and the explanatory gambit	
	MICHAEL	DICKSON	107
	8.1	Introduction	107
	8.2		108
	8.3	Protective measurement	112
	8.4	The explanatory gambit	115
9	Realism	and instrumentalism about the wave function: how should we	
	choose		
	MAURO D	ORATO AND FEDERICO LAUDISA	119
	9.1	Introduction	119
	9.2	Realism as a stance and its pluralistic consequences	120
	9.3	Realism about configuration space	122
	9.4	The wave function as a nomological entity	124
	9.5	The property-first view of the wave function: dispositionalism	127
	9.6	The PBR theorem	129
	9.7	Conclusion	131
1	0 Protecti	ve measurement and the PBR theorem	
		ZRONI AND DANIEL ROHRLICH	135
		Introduction	135
		Protective measurement: implications for experiment and	100
		theory	135
	10.3	The Pusey–Barrett–Rudolph (PBR) theorem	137
		Protective measurement, PBR and the reality of $ \Psi\rangle$	140
1	1 (77)		
11 The roads not taken: empty waves, wave function collapse and protective measurement in quantum theory			
			145
	PETER HO		145
	11.1	The explanatory role of empty waves in quantum theory	145
	11.2	Measurement: empty waves <i>vs</i> . wave function collapse	147
	11.3	The art in quantum mechanics: path detection and	1.40
	11 4	conceptual precision	149
	11.4		155
		Evidence for empty waves: protective measurement	159
	11.6	Conclusion	162

Cambridge University Press
78-1-107-06963-3 - Protective Measurement and Quantum Reality: Towards a New Understanding
of Quantum Mechanics
Shan Gao
Frontmatter
More information

Х	Contents	
12 Implic traject		
AURÉLIE	N DREZET	164
12.1	Motivation	164
12.2	A historical review of the pilot-wave interpretation	164
12.3	B The measurement theory and the adiabatic theorem	167
12.4	Conclusion	177
-	lement, scaling, and the meaning of the wave function in the measurement	
MAXIMI	JAN SCHLOSSHAUER AND TANGEREEN V. B. CLARINGBOLD	180
13.1	Introduction	180
13.2	2 Theory of entanglement in protective measurement	182
13.3	Implications of entanglement in protective measurement	185
13.4	The scaling problem	187
13.5	Protective measurement and the quantum formalism	189
13.6	6 Concluding remarks	191
14 Protec	Protective measurement and the nature of the wave function within the	
primiti	ve ontology approach	
VINCENT	LAM	195
14.1	Introduction	195
14.2	Primitive ontology and the nature of the wave function	197
14.3	B Quantum structure	202
14.4	Conclusion and perspectives	207
15 Reality	and meaning of the wave function	
SHAN GA	0	211
15.1	Introduction	211
15.2	2 On the reality of the wave function	212
15.3	Meaning of the wave function	216
15.4	Conclusions	227
Index		230

Contributors

Yakir Aharonov, Tel Aviv University and Chapman University Gennaro Auletta, University of Cassino Tangereen V. B. Claringbold, University of Portland Eliahu Cohen, Tel Aviv University Michael Dickson, University of South Carolina Lajos Diósi, Wigner Research Center for Physics Mauro Dorato, University of Rome Three Aurélien Drezet, CNRS-University Joseph Fourier Robert Flack, University College London Shan Gao, Chinese Academy of Sciences Guy Hetzroni, Hebrew University of Jerusalem Basil J. Hiley, University of London Peter Holland, University of Oxford Vincent Lam, University of Lausanne Federico Laudisa, University of Milan-Bicocca Peter J. Lewis, University of Miami Daniel Rohrlich, Ben-Gurion University of the Negev Maximilian Schlosshauer, University of Portland Lev Vaidman, Tel Aviv University

Preface

In 1993, Yakir Aharonov, Lev Vaidman and Jeeva Anandan discovered an important new method of measurement in quantum mechanics, the so-called protective measurement. Distinct from conventional measurements, protective measurement is a method for measuring the expectation value of an observable on a single quantum system. By a series of protective measurements, one can even measure the wave function of a single quantum system. In this way, theoretical analysis of protective measurement may lead to a new and deeper understanding of quantum mechanics. Moreover, its experimental realization may also be useful for quantum information technology.

This book is an anthology celebrating the 20th anniversary of the discovery of protective measurement. It begins with a clear and concise introduction to standard quantum mechanics, conventional measurement and protective measurement, and contains fourteen original essays written by physicists and philosophers of physics, including Yakir Aharonov and Lev Vaidman, the two discoverers. The topics include the fundamentals of protective measurement, its meaning and applications, and current views on the importance and implications of protective measurement. The book is accessible to graduate students in physics and chemistry. It will be of value to students and researchers with an interest in the meaning of quantum theory and especially to physicists and philosophers working on the foundations of quantum mechanics.

When I contacted potential contributors to this anthology, one of them replied, "Protective measurements are something I know nothing about." Indeed, as one referee of this book also admitted, although protective measurement has attracted attention over the last 20 years and has raised many interesting questions, it is still an under-studied aspect of quantum mechanics. In recent years the associated field of weak measurement has seen significant increased activity, and the latest Pusey– Barrett–Rudolph theorem has also caused many people to revisit the question of the reality of the wave function. Can protective measurement, like weak measurement,

xiii

xiv

Preface

be performed in laboratories in the near future? Do protective measurements anticipate the Pusey–Barrett–Rudolph theorem? What, if any, are the implications of protective measurements for the ontological meaning of the wave function and the nature of quantum reality? I hope this anthology will arouse more researchers' interest in protective measurement and its implications, and further open up a new line of research in the foundations of quantum mechanics.

I wish to express my warm thanks to Baichun Zhang, Yidong Liu and Miao Tian for helpful discussions, which inspired me to take up the project of editing an anthology about protective measurement and relevant topics. I am grateful to Yakir Aharonov and Lev Vaidman for their support for the project. I thank all contributors for taking the time to write these new essays in the anthology. I also thank Simon Capelin of Cambridge University Press for his kind support as I worked on this project, and the three referees who gave helpful suggestions on how the work could best serve its targeted audience. Finally, I am deeply indebted to my wife Huixia and my daughter Ruiqi for their unflagging love and support.

Shan Gao Beijing, 2013

Acknowledgements

The editor and publisher gratefully acknowledge the permission granted to reproduce copyright texts and figures on the following pages:

p.71: Figure 6.1. Reprinted with permission from Kocsis, S., Braverman, B., Ravets, S., *et al.* (2011a). Observing the average trajectories of single photons in a two-slit interferometer, *Science*. **332**, 1170–1173;

p.74: Figure 6.4. Reprinted with permission from Duck, I. M., Stevenson, P. M. and Sudarshan, E. C. G. (1989). The sense in which a "weak measurement" of a spin-1/2 particle's spin component yields a value 100, Phys. Rev. D, **40**, 2112–2117;

p.77: Figure 6.5. Reprinted with permission from Ritchie, N. W., Story, J. G. and Hulet, R. G. (1991). Realization of a measurement of a weak value, *Phys. Rev. Lett.*, **66**, 1107–1110;

p.145: Reprinted with permission from Frost, R. (1916). *The Road Not Taken and Other Poems*. New York: Dover. (1993 reissue of *Mountain Interval*. New York: Henry Holt & Co. 1916).