
Introduction and Summary

It is widely known that the commutative probability theory based on Kolmogorov’s measure
theoretic axioms and the quantum probability theory based on von Neumann’s postulates
were both created at about the same time in the 1930s (see, e.g., Kolmogorov [Kol50] and
von Neumann [vNeu55] for the origins of these 2 very different but parallel lines of theory).
Following Kolmogorov’s original work, theory of the classical Markov processes has been the
subject of intensive research for the last few decades. The classical theory, its applications,
and their connections to other areas of research have been systematically developed by many
prominent probabilists as illuminated by their widely referenced monographs such as those
of Dynkin [Dyn62], Blumenthal and Getoor [BG68], Ethier and Kurtz [EK85], Renuv and
Yor [RY99], and others. On the other hand, development of a complete theory of quantum
stochastics such as quantum Markov processes has been progressing at a much slower pace
in comparison with that of its classical counterpart. This is perhaps because development
of a theory of quantum stochastics and quantum Markov processes requires an unusually
large number of tools from operator theory and perhaps also because the probabilistic and
analytical tools for understanding sample path behaviors of quantum stochastic processes
have yet to be developed.

The main goal of this monograph is to give a systematic exploration of relevant topics in
quantum Markov processes in hopes of stimulating further research along this line and of
stimulating interest in the classical stochastics community for research in its quantum coun-
terpart. This monograph is written largely based on the current account of relevant research
results by widely surveying relevant results contributed by many prominent researchers in
quantum probability, quantum noise, quantum stochastic calculus, stochastic quantum dif-
ferential equations, quantum Markov semigroups, strong quantum Markov processes, and
large time asymptotic behaviors of quantum Markov semigroups through a systematic and
self-contained introduction/presentation of these very interesting topics in an attempt to
illuminate the rigor and beauty of quantum stochastics and quantum Markov processes.

The intended readers for this research monograph can include but are not limited to the
following 3 groups of researchers: (i) classical probabilists and stochastic analysts who
are interested in learning and extending their research to quantum probability and quantum
stochastic processes; (ii) operator theorists who are interested in linear operators acting on C∗-
and von Neumann algebras and their applications to quantum systems; and (iii) statistical,
theoretical, and quantum physicists who are interested in a rigorous presentation of a math-
ematical theory of quantum stochastics and quantum Markov processes.

This monograph can be used as an introduction or a research reference for advanced grad-
uate students and researchers who have been exposed to theory of classical (or commutative)
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Markov processes and who also have special interest in its noncommutative counterpart.
With a few exceptions, this monograph is intended to be as much self-contained as pos-
sible by providing necessary review material and the proofs for almost all of the lemmas,
propositions, and theorems contained herein. Some knowledge in real analysis, functional
analysis, and classical stochastic processes will be helpful. However, no background material
is assumed beyond knowledge of the basic theory of Hilbert spaces, bounded linear operators,
and classical Markov processes.

This monograph consists of 11 chapters that constitute the backbone of quantum
stochastics and quantum Markov processes. The content of each of these 11 chapters are
briefly summarized below.

Chapter 1. Operator Algebras and Topologies
In preparing the tools that are required for developing theory of quantum stochastics and
quantum Markov processes, this chapter gives a brief review of complex Hilbert spaces and
their topological dual spaces together with the concepts of weak and strong convergence.
The concepts of bounded and unbounded linear operators on complex Hilbert spaces are
introduced. Special classes of bounded linear operators including self-adjoint, trace-class,
compact and projection operators, operator-valued spectral measures, and the von Neumann
spectral representation are discussed. Various concepts of operator topologies, such as
norm-topology, strong topology, weak topology, σ -strong topology, σ -weak topology, and
weak∗-topology on the space of bounded linear operators are given. It is illustrated that
some of these topologies are actually equivalent under appropriate conditions. This chapter
also introduces 2 major types of algebras, namely, the C∗-algebra and von Neumann algebra
of operators on a complex Hilbert space. These 2 different types of algebras are all to be
denoted by A. It is assumed throughout the monograph that all algebras are unital, i.e.,
they contain the identity operator on the Hilbert space. These algebras, especially the von
Neumann algebra, are important tools for describing a quantum system. One of the important
topology on A that plays an important role in studying quantum Markov semigroups or
quantum Markov processes is the so-called σ -weak continuity. Finally, representation of a
C∗-algebra is defined and the background material for describing Gelfand-Naimark-Segal
construction for a representation of C∗-algebras is described in details.

Chapter 2. Quantum Probability
Complex Hilbert spaces play an important role in describing quantum systems. In fact,
with every quantum system there is a corresponding complex Hilbert space H that consists
of the states of the quantum system. The Hilbert space H that represents a composite
quantum system of n subsystems can be expressed as the tensor product H1 ⊗ . . .⊗ Hn of n
component systems described, respectively, by H1, . . . ,Hn−1, and Hn . This chapter provides
mathematical formulation of a generic quantum system according to the following set of
postulates initiated by von Neumann (see, e.g., von Neumann [vNeu55]):

Postulate 1 With every quantum system there is a corresponding finite-dimensional or
infinite-dimensional separable complex Hilbert space H on which a C∗- or a von Neumann
algebra of linear operators A is defined. This complex Hilbert space H is called in physics
terminology the space of states.
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Postulate 2 Given a C∗- or a von Neumann algebra of operators A on H for the quantum
system, the space of quantum states S(A) of the quantum system then consists of all positive
(and hence self-adjoint) trace class operators ρ ∈ A with unit trace, tr (ρ) = 1. The pure
states are projection operators onto one-dimensional subspaces of H, and the mixed states
are those that can be written as convex combination of pure states. A state ρ will be called
the density operator or density matrix if tr (ρa) = tr(a) for all a ∈ A. Density operators play
an important role in quantum physics. The pair (A, ρ) of a von Neumann algebra A and a
quantum state ρ will be called a quantum probability space. Roughly speaking, A represents
quantum random variables or obervables, and ρ represents the probability law that governs
the quantum system.

Postulate 3 Roughly speaking, an observable of the quantum system is a positive operator-
valued measure a defined on the Borel measure space (R,B(R)). Specifically, for each Borel
set B ∈ B(R), a(B) is a self-adjoint linear (but not necessarily bounded) operator on the
Hilbert space H.

Postulate 4 A process of measurement in a quantum system is the correspondence between
the observable-state pair (a, ρ) and the probability measure μa on the real Borel measurable
space associated with the observable a. For every Borel subset E ∈ B(R), the quantity
0 ≤ μa(E) ≤ 1 is the probability that when a quantum system is in the state ρ, the result of
the measurement of the observable a belongs to E . The expectation value (the mean value)
of the observable a in the state ρ is

〈a|ρ〉 =
∫ ∞

−∞
λdμa(λ),

where μa(λ) = μa((−∞, λ)) is the distribution function for the probability measure μa.
The mathematical details of each of the above 4 postulates constitute the topics discussed

in this chapter. In particular, the concept of quantum probability space, quantum random
variable, quantum expectations, and quantum conditional expectations are introduced. It is
well known that the concept of an expectation operator conditioned on a given sub-σ -algebra
plays a crucial role in classical Markovian theory of processes. Similar to the classical
Markovian properties, the concept of quantum Markovian properties is hinged heavily on
the concept of conditional expectation of an observable with respect to a von Neumann
sub-algebra. Unfortunately, a complete theory of quantum conditional expectation is yet to
be developed. While there is very little literature published in this area, this chapter gives,
in addition to weak conditional expectation, the definition and a construction of quantum
conditional expectation given a von Neumann sub-algebra. These concepts are sufficient for
us to develop quantum Markovian properties in the subsequent chapters.

Chapter 3. Quantum Stochastic Calculus
This chapter begins with introductions of symmetric Fock space �(H) and symmetric
Guichardet space �(H) of a generic complex Hilbert space H. It is shown that these 2
spaces are actually isomorphic and have been used interchangeably throughout the chapter.
In particular, the simple and yet useful integral-summation formula for the Guichardet
space is often employed to establish the essential results in quantum stochastic calculus.
It has been shown that the symmetric Fock space (and hence the symmetric Guichadet
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space) provides a plausible mathematical tool for modeling phenomena in quantum optics
or quantum electrodynamics. Many results in the quantum physics and quantum probability
literature are actually established based on this concrete model space. When the generic
complex Hilbert space H = L2(R+; K) (where K is another complex Hilbert space), the
class of exponential vectors along with 3 different types of quantum noise processes,
namely, the creation, annihilation, and neutral processes, can be introduced. It is shown
that the subspace generated by the class of exponential vectors is dense in the Fock space.
Therefore, it is convenient to verify the properties that hold for a Fock space by verifying
the same hold for the class of exponential vectors. Parallel to those of Itô integrals with
respect to classical Brownian motion and/or Poisson process, the concepts of a quantum
stochastic integral of a operator-valued process (as a member of the Fock space) with respect
to each of the above mentioned quantum noise processes are constructed. The quantum
stochastic calculus, parallel to those of classical Itô calculus, is developed within the content
of Fock or Guichadet space. The quantum stochastic calculus enables more detailed analysis
of quantum stochastic differential equations, which is the main topic of discussion in
Chapter 4.

Chapter 4. Quantum Stochastic Differential Equations
Based on the results in Chapter 3, this chapter derives and considers a general form of
linear (left) and (right) Hudson-Parthasarathy quantum stochastic differential equations
driven by quantum noises in symmetric Fock space and with operator-valued matrices as
coefficients. Specifically, this chapter studies the existence and uniqueness of the solution
process for both the left and right quantum stochastic differential equations and conditions
under which the solution processes are unitary, contraction, isometry, and co-isometry.
These results make extensive use of the properties of stochastic integral driven by quantum
noise and its quantum stochastic calculus in the context of a symmetric Fock space. In this
chapter various discrete approximation schemes of the left Hudson-Parthasarathy QSDE
are explored for numerical computation. Specifically, it is shown that the solution of the
Hudson-Parthasarathy QSDE can be approximated by a sequence of discrete interaction
models with decreasing time step. In order to study this problem, discrete interaction
models are embbeded in a limiting space. This allows us to prove strong convergence of the
embedded discrete cocycles to the solution of the Hudson-Parthasarathy QSDE. It is also
pointed out that the way in which the embedding is done does not affect the proof the main
results presented in this chapter.

Chapter 5. Quantum Markov Semigroups
This chapter defines and explores basic properties of a quantum Markov semigroup {Tt , t ≥
0} of linear maps on the C∗-algebra or von Neumann algebra A. The quantum Markov
semigroup (QMS) plays a key role in describing quantum Markov processes, which are
to be explored in the subsequent chapters. The concept of QMS extends the semigroup
of probability transition operators {Tt , t ≥ 0} for a classical Markov process. In the case
that the QMS {Tt , t ≥ 0} is uniformly continuous and A = L∞(H) (the space of bounded
linear operators on H), then its infinitesimal generator L:D(L) → A can be completely
characterized by the celebrated Lindblat theorem. In this case, the evolution of quantum
states {ρt , t ≥ 0} can then be described by the Lindblat master equation ρ̇t = L(ρt ) based on
which many advances in quantum systems have been made.
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Chapter 6. Minimal QDS
The previous chapter dealt with general QMSs and with the characteristics of the infinitesi-
mal generator L for a given quantum Markov semigroup (QMS) {Tt , t ≥ 0} of operators
that are uniformly continuous. However, the class of uniformly continuous quantum Markov
semigroups is too small for applications in quantum probability and quantum physics.
Construction of the quantum Markov semigroup (QMS) based on 2 infinitesimal generators
G and L that appear in the Lindbladd master equation is given in this chapter. The problem
of constructing quantum Markov semigroups with unbounded generator, in principle, could
be treated with the Hille-Yosida theorem (see Yosida [Yos80]) at least in the case when the
domain of the infinitesimal generator is an algebra so that conditional complete positivity
makes sense. However, in all the applications the infinitesimal generator L is not given
explicitly but is given formally in a “generalized” Lindblad form with unbounded operators
G and L. We follow in this chapter Davies’s construction of the predual semigroup of a
quantum Markov semigroup on the von Neumann algebra L∞(H) from given operators G
and L in H.

Chapter 7. Quantum Markov Processes
It is widely known that a classical Markov semigroup of transition operators can be generated
from a given classical Markov process. On the other hand, given a Markov semigroup
{Tt , t ≥ 0} a classical Markov process {Xt , t ≥ 0} can be constructed using the Kolmogorov
consistency theorem. In the context of quantum probability, the construction of a quantum
Markov process from a given quantum Markov semigroup of operators {Tt , t ≥ 0}) turns
out to be a nontrivial matter. This is partly due to the fact that, although the general concept
of conditional expectation of an observable given a sub-von Neumann algebras B ⊂ A
can be defined and required properties can be described, an explicit construction of such
a conditional expectation is still unavailable in general. The main objective of this chapter
is to introduce relevant concepts and to develop some properties of quantum Markov
processes in the content of quantum probability explored in previous chapters. There are
2 major components in this chapter, namely, (i) introduction of concepts and derivation of
properties of a quantum Markov processes based on some assumed and/or derived properties
of conditional expectation Eρ[· |At]] based on a filtration of sub-von Neumann algebras
{At], t ≥ 0} of A, and (ii) Markov dilation or construction of a weak quantum Markov flow
(WQMF) from a given quantum Markov semigroup {Tt , t ≥ 0} using the weak conditional
expectation E[· |Ft ], where {Ft , t ≥ 0} is a filtration of orthogonal projection operators
defined on the complex Hilbert space.

Chapter 8. Strong Quantum Markov Processes
It is well known that the concept of stopping times plays an important role in the classical
strong Markov processes. Similarly, our definition of strong quantum Markov processes
generalizing the classical strong Markov processes requires introduction of a quantum version
of stopping times. A quantum (noncommutative) stopping time (to be abbreviated as QST
whenever and wherever is convenient in the following) on a filtered Hilbert space, on the
other hand, is defined as a (right continuous) spectral measure on [0,∞] with values in
the space of orthogonal projection operators on H that satisfy some appropriate adaptivity
properties. In the above, the weak filtration of projection operators {Ft , t ≥ 0} plays the role
of filtration of sub-σ -algebras {Ft , t ≥ 0} in the classical stopping times and classical strong
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Markov processes. For a classical stopping time τ , let Fτ be the collection of events anterior
to τ . Similar to Fτ , the corresponding projection operator Fτ for the quantum version is then
first defined for a discrete QST τ and then for the general QST τ via convergence of Fτn by
a sequence of discrete QSTs (τn)∞n=1. This chapter provides the concept of quantum Markov
flows (H,Ft , jt , t ≥ 0) introduced in Chapter 7 to strong quantum Markov flow. Examples
of strong quantum Markov flows on the symmetric Fock space � = �sym(L2(R+; K)) are
also given. Sufficient conditions for strong quantum Markovian flows are established. If the
quantum Markov semigroup {Tt , t ≥ 0} is uniformly continuous (and hence its infinitesimal
generator L exists), then the process {Mt (X), t ≥ 0}, X ∈ D(L), is a quantum martingale in
the sense that FsMt (X)Fs = Ms(X) for all s ≥ t , whereMt (X) is defined by

Mt (X) = jt (X)− j0(X)−
∫ t

0
ju(L(X))du.

Additionally, a noncommutative generalization of a well-known Dynkin’s formula is
explored. In this chapter, we develop the theory of quantum stopping times, quantum
martingales, and their corresponding properties that are parallel to the classical theory
briefly described above. Lyapunov stability of strong quantum Markov processes based on
the symmetric Fock space is also discussed.

Chapter 9. Invariant Normal States
The main purpose of this chapter is to develop the concept of invariant normal states via the
fixed points of the QMS {Tt , t ≥ 0} and {T∗t , t ≥ 0}. The invariant normal states turns out
to be an extension of stationary measure of a classical Markov process. In this chapter we
first examine the extension of the classical Prohorov theorem to its quantum counterpart and
then explore the existence conditions for an invariant normal state under the general QMS
and then under the uniformly continuous QMS. It is proved that if the QMS {Tt , t ≥ 0}
possesses a faithful invariant normal state ρ, then ρ is unique. In addition, properties of von
Neumann sub-algebras F(T) and N (T) of A that play important roles in the next 2 chapters
are also examined.

Chapter 10. Recurrence and Transience
This chapter explores concepts and surveys current results on the recurrence and transience
of quantum Markov semigroups obtained by a few major contributors, including F. Fagnola,
Robelledo, Umaneta, and others. Transience and recurrence come to a probabilist mind as
the first step in the classification of Markov processes. In classical probability, recurrence
and transience have been extensively studied in connection with semigroup and potential
theory. In this chapter, the connection between the potential theory and recurrence and
transience has been extended to quantum Markov semigroups. Specifically, a potential
associated to the QMS {Tt , t ≥ 0} defined by U:A→ A as U(a) = ∫∞0 Tt (a)dt for a ∈ A is
explored. According to the nature of U(a), the properties of transience or recurrence for the
QMS {Tt , t ≥ 0} are characterized. In addition, positive recurrent projections is defined via
support projections of stationary normal states. Then we explore its main related properties
as, for instance, the relation with sub- (or super-) harmonic operators and the dichotomy
transience recurrence for irreducible semigroups. It is shown that an irreducible quantum
Markov semigroup is either recurrent or transient and characterizes transient semigroups by
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means of the existence of nontrivial superhaimonic operators. This chapter also explores its
main related properties such as, for instance, the relation with sub- (or super-) harmonic
operators and the dichotomy transience recurrence for irreducible semigroups.

Chapter 11. Ergodic Theory
This chapter develops the ergodicity, mean ergodicity, and statistical stability for the QMS
{Tt , t ≥ 0} on the von Neumann algebra A and its associated semigroup {T∗t , t ≥ 0} on
the predual A∗. The QMS {T∗t , t ≥ 0} is said to be ergodic if w-limt→∞ T∗t (ω) exists for
every ω ∈ A∗ and mean ergodic if w-limt→∞ 1

t

∫ t
0 T∗s(ω)ds exists for every ω ∈ A∗. It is

clear that ergodicity implies mean ergodicity and that there is a close connection between
the ergodicity of {T∗t , t ≥ 0} with its invariant normal states explored in Chapter 11. In
fact, it is shown in this chapter that every w-limit of the Cesaro means

( 1
t

∫ t
0 T∗s(ω)ds

)
is

an invariant state for any quantum stateω. Conversely, if there exists a faithful family G of
normal states then the QMS {Tt , t ≥ 0} (and hence {T∗t , t ≥ 0}) is mean ergodic. In addition,
equivalent conditions for mean ergodicity of the QMS are established in this chapter. While
these equivalent conditions serve as a characterization of mean ergodicity, they are very
difficult to verify especially in the infinite dimensional case. To overcome this shortcoming,
Emel’syanov and Wolff [EW06] introduced the quantum version of a mean lower bound
for a positive quantum state and proved that if the distance between a Cesaro mean of any
normal state can be made asymptotically closed to the order interval of a mean lower bound
element, then the QMS {T∗t , t ≥ 0} is mean ergodic. Furthermore, if A is atomic, then the
space of fixed points F(T∗) is finite dimensional. On the other hand it is also shown that
the QMS is mean ergodic and the space of invariant states is one dimensional if and only if
there exists a nontrivial mean lower bound. A new proof using GNS representation of states
for Frigerio-Verri’s theorem (see Frigerio and Verri [FV82]) that addressed the sufficient
conditions for the ergodicity of the QMS {Tt , t ≥ 0} is also provided in this chapter. Finally,
this chapter closes with a result that connects the existence of a mean lower bound with
statistical stability of the QMS.

While it is recommended that the chapters be read in succession for readers who are
exposed to the subject for the first time, we outline the flow of presentations of the chapters
below for the benefit of readers who are interested only in certain topic areas for a quick
overview/reading.

� Follow Chapter 1 ⇒ Chapter 2 ⇒ Chapter 3 ⇒ Chapter 4, for exploration of quantum
stochastic calculus and quantum stochastic differential equations.

� Follow Chapter 1 ⇒ Chapter 2 ⇒ Chapter 3 ⇒ Chapter 5 ⇒ Chapter 6 ⇒
Chapter 7 ⇒ Chapter 8 ⇒ Chapter 9 ⇒ Chapter 10 ⇒ Chapter 11 for quantum Markov
semigroups/processes and their large time asymptotic behaviors.

� Follow Chapter 1⇒ Chapter 2⇒ Chapter 3 for introduction to quantum probability.
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Operator Algebras and Topologies

This chapter serves as an overview of some of the basic building blocks for quantum
probability, quantum Markov semigroups/processes, and their large time asymptotic behavior
that are to follow.

We start out with a brief review of complex Hilbert spaces and their topological dual
spaces together with the concepts of weak and strong convergence. The concepts of linear
operators on complex Hilbert spaces are introduced. Special classes of bounded linear oper-
ators including self-adjoint, Hilbert-Schmidt, trace-class, compact and projection operators,
operator-valued spectral measures, and the celebrated spectral representation theorem due
originally to von Neumann (see von Neumann [vNeu55]) are discussed. We also define vari-
ous concepts of operator topologies, such as norm-topology, strong topology, weak topology,
σ -strong topology, σ -weak topology, and weak∗-topology, on the space of bounded linear
operators. Equivalence of some of these topologies under appropriate conditions are illus-
trated. This chapter also introduces the 2 major types of algebras, namely, the C∗-algebra and
von Neumann algebra of operators on a complex Hilbert space. These 2 different types of
algebras are all to be denoted by A. However, the results will be stated with specification to
which of the algebras is under consideration. Unless otherwise stated, it is assumed through-
out the book that all algebras are unital; i.e., they contain the identity operator. These algebras,
especially the von Neumann algebra, are important tools for describing quantum probability
spaces and quantum systems. Many of the results presented in this chapter are stated in terms
of C∗-algebras in general without specifications to the von Neumann algebra. One of the
important topology on A that plays an important role in studying quantum Markov semi-
groups or quantum Markov processes is the so called σ -weak continuity. Finally, we define
representation of a C∗-algebra and prepare the background material for describing Gelfand-
Naimark-Segal construction for a representation of C∗-algebra, which is described in detail.

The material presented in this chapter can be found in most of the research monographs or
graduate texts on functional analysis, such as those of Rudin [Rud91], Conway [Con94], Reed
and Simon [RS70], [RS75], and Yosida [Yos80]. Properties of operator algebras including
those of C∗- and von Neumann algebras and their GNS construction/representation can be
found in Takesaki [Tak76], Bratteli and Robinson [BR87], and Dixmier [Dix81].

1.1 Complex Hilbert Spaces

This section serves as a review of complex Hilbert spaces. With a few exceptions, widely
known theorems and/or propositions are stated without a proof. The material presented in
this section can be found in most of standard functional analysis textbooks or monographs.
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1.1 Complex Hilbert Spaces 9

Throughout the end of this book, let ı = √−1, and let R and C denote the fields of real
numbers and complex numbers, respectively. If z = x + ıy ∈ C, where x, y ∈ R, let z̄ =
x − ıy ∈ C and |z| =√x2 + y2 ∈ R+ := {a ∈ R | a ≥ 0} denote the complex conjugate
and the modulus of the complex number z ∈ C, respectively. In this case, x = �(z) is the
real part of z and y = �(z) is the imaginary part of z. Elements in R or C shall be denoted
by lower case letters such a, b, or x and y, etc.

For −∞ < a < b <∞, we use the usual convention for closed, open, and half-open
intervals on the real line R such as [a, b], [a, b[, ]a, b], ]a, b[, ]−∞, a], ]−∞, a[, [b,∞[,
and ]b,∞[ throughout this book.

Let H denote a (generic) Hilbert space over the field of complex numbers C and be
referred to as a complex Hilbert space. The complex Hilbert space H will be equipped with
the Hilbertian inner product 〈·, ·〉H: H×H → C that satisfies the following conditions:

1. (Linearity in second argument)

〈φ, aϕ + bς〉H = a〈φ, ϕ〉H + b〈φ, ς〉H, ∀a, b ∈ C and ∀φ, ϕ, ς ∈ H

2. (Conjugate-linearity in the first argument)

〈aφ, ϕ〉H = ā〈ϕ, φ〉H, ∀a ∈ C, ∀φ, ϕ ∈ H

3. (Conjugate symmetric)

〈φ, ϕ〉 = 〈ϕ, φ〉, ∀φ, ϕ ∈ H

4. (Positive definiteness)

〈φ, φ〉H ≥ 0, ∀φ ∈ H, and 〈φ, φ〉 = 0 if and only if φ = 0.

We comment here that conventions for Hilbertian inner product differ as to which argument
should be linear and which should be conjugate-linear. Throughout this book, we take the first
to be conjugate-linear and the second to be linear. This is the convention used by essentially
all physicists and originates in Dirac’s bra-ket notation (see Chapter 2) in quantum mechanics.
The opposite convention is more common in mathematics.

The Hilbertian norm ‖ · ‖H: H → R corresponding to the inner product 〈·, ·〉H is defined
by

‖ψ‖H =
√〈ψ,ψ〉H, ∀ψ ∈ H.

It is known that a complex Hilbert space is a complex Banach space under the Hilbertian
norm. However, we occasionally will also work with a complex Banach space X equipped
with the norm ‖ · ‖X: X → R which may not be equipped with a Hilbertian inner product (and
therefore is not a Hilbert space). Instead they may be equipped with a semi-inner product. As
a reference we recall that a semi-inner product for a complex Banach space X is a function
[·, ·]: X×X → C such that

1. [φ + ϕ,ψ] = [φ,ψ]+ [ϕ,ψ], ∀φ, ϕ,ψ ∈ X

2. [φ, aϕ] = a[φ, ϕ], ∀a ∈ C and ∀φ, ϕ ∈ X

3. [aφ, ϕ] = ā[φ, ϕ], ∀a ∈ C and ∀φ, ϕ ∈ X

4. [φ, ϕ] = [ϕ, φ], ∀φ, ϕ ∈ X
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5. [φ, φ] ≥ 0 ∀φ ∈ X and [φ, φ] = 0 if φ = 0
6. |[φ, ϕ]| ≤ [φ, φ]1/2[ϕ, ϕ]1/2, ∀φ, ϕ ∈ X.

It is clear that a Hilbertian inner product is a semi-inner product. However, a semi-inner
product is not necessary a Hilbertian inner product. The difference is that a semi-inner
product satisfies all the properties of inner products except that it is not required to be strictly
positive. The seminorm associated with the semi-inner product is a function ‖ · ‖: X → R is
defined by

‖φ‖2 = [φ, φ], ∀φ ∈ X.

Therefore, ‖φ‖ = 0 does not necessarily imply that φ = 0 for a semi-norm.
Throughout the end, elements (or vectors) of a complex Hilbert space H or a complex

Banach space X will be denoted by lower case Greek symbols such as φ, ϕ, and ζ , and,
occasionally, the lower case letters such as u, v, andw. The zero vector of H shall be denoted
by 0.

The closure of a subset A of H (or X) in the Hilbertian (or Banach) norm ‖ · ‖ is denoted
by Ā. A subset A of H (or X) is said to be dense in H (or in X) if Ā = H (or Ā = X). The
complex Hilbert space H (or the Banach space X) is said to be separable if it contains a
countable dense subset. A subset A of a Hilbert space H (or Banach space X) is said to be
total in H (or in X) if [A], the linear manifold generated by A, is dense in H (or in X).

Two vectors ψ and φ in complex Hilbert space H are called orthogonal if 〈ψ, φ〉 = 0. In
this case, we denote ψ ⊥ φ. A set A ⊂ H is called an orthogonal set of vectors if ψ ⊥ φ for
all ψ, φ ∈ A and ψ �= φ. An orthogonal set A ⊂ H is an orthonormal set if ‖ψ‖ = 1 for all
ψ ∈ A. An orthonormal basis A for H is a maximal orthonormal set, i.e., if B ⊂ H is such
that A ⊂ B then B is not an orthonormal set. The Hilbert space H is said to be N dimensional
if the orthonormal basis A consists of N distinct elements (vectors). The Hilbert space H is
said to be infinite dimensional if its orthonoral basis consists of infinite distinct vectors.

Naturally, we do not speak of the orthogonality in a non-Hilbertian Banach space X

because it is not equipped with an inner product.
Let N := {1, 2, . . .} be the set of all natural numbers, i.e., positive integers.
Some of the widely known and frequently used Hilbert spaces are given below.

Example 1 CN , the space of N -component complex vectors, is an N -dimensional Hilbert
space equipped with the inner product 〈·, ·〉: CN ×CN → C defined by 〈a, b〉 =∑N

i=1 ai bi

for all a = (a1, a2, . . . , aN ) and b = (b1, b2, . . . , bN ) in CN , where ai is the complex conju-
gate of ai .

Example 2 The space of squared summmable complex sequences,

l2(N; C) =
{

(an)n≥1

∣∣∣ ∞∑
n=1

|an|2 <∞
}
,

is an infinite-dimensional complex Hilbert space equipped with the inner product

〈·, ·〉: l2(N; C)× l2(N; C) → C

defined by 〈(an)n≥1, (bn)n≥1〉 =∑∞
n=1 anbn for all (an)n≥1, (bn)n≥1 ∈ l2(N; C). From func-

tional analysis point of view, all infinite-dimensional complex Hilbert spaces are equivalent




