Index

Note: Page numbers followed by ‘f’ and ‘t’ indicate figures and tables.

- accelerated failure time (AFT) model, 227
- accuracy quality control (AQCg; AQCp), MetaQC package, 41
- aCGH (array comparative genomic hybridization), 333, 403
- AD (Alzheimer’s disease), 102–103
- adaptively weighted Fisher’s (AW-Fisher’s) method, 43
- adjusted Rand index, 242
- Affymetrix arrays, 400–401
- AFT (accelerated failure time) model, 227
- allele frequencies, comparison of, 14f
- allele-specific binding (ASB), in ChIP-seq, 109, 123–128
- Alzheimer’s disease (AD), 102–103
- Amandine, E., 202
- AMD GWAS, 19–20
- AQC (accuracy quality control), MetaQC package, 41
- ARACNe algorithm, 297
- Argonaute protein, 285–286, 292
- array comparative genomic hybridization (aCGH), 333, 403
- ArrayExpress, 397
- ASB (allele-specific binding), in ChIP-seq, 109, 123–128
- autologistic regression, 206, 208–209
- AW-Fisher’s (adaptively weighted Fisher’s) method, 43
- background window, ChIP-chip peak calling, 119
- bacterial artificial chromosome (BAC) probes, aCGH, 403–404
- Bayesian Consensus Clustering (BCC) method, 251–260
- application to TCGA data, 257–260
- defined, 238
- Dirichlet mixture model, 252–253
- estimation, 254–256
- illustrative example, 256–257
- multisource model, 253–254
- overview, 251–252
- Bayesian false discovery rate (BFDR), 362
- Bayesian graphical models
 - BayesGraph for TCGA integration, 201–214
 - graphical models, 203
 - markov random fields, 204–205
 - MCMC Simulations, 207–208
 - overview, 201–203
 - posterior inference using false discovery rates, 208
 - probability model, 205–207
 - simulation study, 208–211
 - TCGA integrative analysis, 211–214
 - data description, 226–227
 - iBAG models, 220–226
 - linear, 221–224
 - non-linear extensions, 224–226
 - overview, 220–221
 - illustrations, 226
 - overview, 4–5, 217–220
 - results, 227–233
- Bayesian information criterion (BIC)
 - correlation motif model, 117–118
 - directed acyclic graph, 273
- BBID database, 335
- BCC method. See Bayesian Consensus Clustering method
- Benjamini-Hochberg (BH) procedure, 51
- BFDR (Bayesian false discovery rate), 362
- BH (Benjamini-Hochberg) procedure, 51
- BIC. See Bayesian information criterion
binding, miRNAs
ComiR targeting method, 292–294
effect of single and multiple targets, 290
Fermi-Dirac combination of targets, 290–292
thermodynamics of, 289–290
binding, TF
cause or consequence relationship between
gene expression, 393–394
ENCODE K562 and GM12878 data, 378–379
framework for integrating with gene
expression data, 376–377
interplay between histone modification and
other chromatin features, 391–392
machine learning methods used in
predictive models, 377–378
ModENCODE Early Embryo data, 379
Mouse ESC data, 379
overview, 374–375
performance evaluation of models, 378
predicting differential gene expression,
388–389
predicting expression levels for genes with
HCP and LCP content, 391
predicting expression of noncoding genes,
389–390
predicting gene expression by combining
with histone modifications, 385–388
predicting gene expression from, 379–382
regulatory signals in distal regions,
392–393
Yeast and Fly data, 379
BioCarta database, 335, 336f, 422
biological pathways
defined, 421
iFad method, drug-pathway association
analysis, 422
iPad method, drug-pathway association
analysis, 425
BioPAX pathway format, 306
burden tests, meta-analysis of GWAS
that assume distribution of variant effect
sizes, 25–26
that assume variants have similar effect
sizes for a simple burden test in
study k, the impact of multiple rare
variants, 24
cancer (subtype) analysis, 350–352, 352f
cancer genomics. See also latent variable
approach, integrative clustering
analysis; somatic mutations in cancer
genomes
active subnetwork search and discovery,
309–310
joint NMF, 134–139
network-regularized joint NMF Method,
139–143
overview, 131–134, 304–305
PARADIGM pathway method, 310–319
applications of, 317, 319
interaction parameters, 316–317
interactions and probabilistic factors,
314–316
matrix of, 318f
overview, 310–312
variables, 312–314
PARADIGM-SHIFT pathway method,
319–322
applications of, 320–322
overview, 319–320
pathway databases, 305–306
pathway methods, 307–308
pathway-based mutation assessment,
308–309
sparse Multiple Block PLS method,
143–147
TieDIE pathway method, 322–328
cancer-related lncRNAs, 406, 407f, 408f
CancerResource Database, 432
canonical correlation analysis (CCA), 241
causal inference, eQTLs, 270–271
CCA (canonical correlation analysis), 241
CD4:CD8 ratio, 171–172
analysis results by applying MCP to each
outcome separately, 191t–192t
analysis results of gMCP, 185t, 193t–194t
analysis results of gMCP with Laplacian
penalty, 195t–198t
analysis results of sparse gMCP, 186t–187t
overlaps of different analysis methods, 184t
CD4/CD8 ratio (T-Lymphocyte
Helper/Suppressor Profile), 171–172
analysis results by applying MCP to each
outcome separately, 191t–192t
analysis results of gMCP, 185t, 193t–194t
analysis results of gMCP with Laplacian
penalty, 195t–198t
analysis results of sparse gMCP, 186t–187t
overlaps of different analysis methods, 184t
centered parametrization, 206
change-point model, gene expression
regulation, 358–360
ChIP (chromatin immunoprecipitation), 108.
See also ChIP-X data
ChIP-chip analysis, 118–123. See also ChIP-X
data
ChIP-seq (chromatin immunoprecipitation
sequencing), 108, 378–380, 385, 388,
398. See also ChIP-X data
ChIP-X data
allele-specific binding in ChIP-seq,
123–128
Index

ChIP-chip analysis, 118–123
correlation motif approach, 112–118
general problem setting and motivations, 110–112
overview, 108–110
chromatin immunoprecipitation (ChIP), 108. See also ChIP-X data
chromatin immunoprecipitation sequencing (ChIP-seq), 108, 378–380, 385, 388, 398. See also ChIP-X data
chromosome instability (CIN), 156, 164
CIFA (common and individual feature analysis), 242
CIMP (CpG island methylator phenotype), 164
CIN (chromosome instability), 156, 164
cis-eQTLs, 87, 94, 268–271, 269f
clinical iBAG model, 222–224
clipper method, analysis of gene expression, 307–308
clustering. See also latent variable approach, integrative clustering analysis
Bayesian Consensus Clustering method, 251–260
differential clustering algorithm, 101
exploratory methods for multisource data, 242–243
cMCP (composite MCP), 176–177, 179–180
CNAs (copy number aberrations), 333–334
CNVs (copy number variations), 132, 143–147, 201–203, 207, 214
Cochran-Mantel-Haenszel method, single-variant association test statistics, 24
coeXpression clusters, 76
coeXpression network, 58, 59f, 67, 68, 69f, 70, 100–102
coherent FFLs, 295f
collapsed Gibbs sampling algorithm, iFad method, 424–425
colon cancer, 156
colorectal carcinoma (CRC) study, 163–165, 164f, 165f
combining effect sizes analysis, microarrays, 44
combining p-values analysis, microarrays evidence aggregation methods, 42–44
order statistics methods, 44
combining ranks analysis, microarrays, 44–45
ComiR targeting prediction algorithm, 287f, 288, 292–294, 293f
common and individual feature analysis (CIFA), 242
complete conditionals, 234–235
complex correlation structures, 219
complex diseases
disease subtype discovery, 56–57
MetaNetwork for differential network detection, 58
MetaPath for pathway analysis, 52–55
network integration of genetically regulated gene expression diabetes genes, 93–100
differential connectivity in coexpression network, 100–102
late-onset Alzheimer’s disease brain study, 102–103
LINKER approach, 92
modeling genetic information flow, 88–91
overview, 86–88
PRINCE approach, 91–92
prize collecting Steiner tree problem, 92–93
random walk approach, 91
network integration of genetically regulated gene expression to study, 86–104
composite MCP (cMCP), 176–177, 179–180
composite penalization, 180
computational burden, exploratory methods for multisource data, 261
computational cancer genomics. See cancer genomics
computational methods. See integrative analysis; integrative quantitative models; latent variable approach, integrative clustering analysis
conditional analyses
meta-analysis of GWAS, 26–28
results of conditional association analysis for LDL and variants in LDLR, 31t
consensus clustering (ensemble clustering), 242–243, 260f
consensus PCA, 241
consistency quality control (CQCg, CQCp), MetaQC package, 41
cost context score, TargetScan targeting prediction algorithm, 287, 294
Conway, A. R. A., 156
cooperative functional effects, mdmodules, 136–138
copy number aberrations (CNAs), 333–334
copy number data, IGF1R gene, 225f
copy number variations (CNVs), 132, 143–147, 201–203, 207, 214
core modules, 347, 350f
correlation motif model data generative process, 113f
integrative analysis of ChIP-X data, 112–118
coupled transcription-splicing modules
mechanisms of, 81
methods and materials, 77–80
CpG island methylator phenotype (CIMP), 164
CQC (consistency quality control), MetaQC
package, 41
CRC (colorectal carcinoma) study, 163–165,
164f, 165f
cross validation
data partitioning, 430f
generalized cross validation, 225
V-fold, 178
Cytoscape biological network viewer, 306
CQC (consistency quality control), MetaQC
package, 41
CRC (colorectal carcinoma) study, 163–165,
164f, 165f
cross validation
data partitioning, 430f
generalized cross validation, 225
V-fold, 178
Cytoscape biological network viewer, 306
DAG. See directed acyclic graph
DANCR lncRNA, 406
data generative process, correlation motif
model, 113f
data partitioning, cross validation procedure,
430f
data set membership vector, FCC, 79
databases
BBID, 335
BioCarta, 335, 336f, 422
CancerResource Database, 432
hmChIP, 109
JASPAR, 81
KEGG, 335, 336f
KEGG MEDICUS, 431
pathway, 305–306
Pathway Commons, 306
Pathway Interaction, 306
DAVID tool
pathways with lowest FDR, 336f
somatic mutations in cancer genomes,
335
DCA (differential clustering algorithm), 101
DCA (differential coexpression analysis),
281–282
DCGs (directed cyclic graphs), 266, 276–277
De Novo Driver Exclusivity
Dendrix algorithm, 343–346, 347–349
Multi-Dendrix algorithm, 343–344,
346–347, 349–351
Dendrix algorithm, 309, 343–346, 345f,
347–349
dependent clustering, 257, 258f
diabetes genes, 93–100
DiHCoEx method, differential coexpression,
102
differential clustering algorithm (DCA), 101
differential coexpression analysis (DCA),
281–282
differential connectivity
in coexpression network, 100–102
modular differential connectivity, 103, 103f
differential gene expression, 389f
differential principal component analysis
(dPCA), 128
dimension reduction. See also joint and
individual variation explained method
iCluster method, 3, 162f, 220, 243
MetaPCA, 3, 39k, 55–56
nonnegative matrix factorization, 3, 55,
133f, 134–139
overview, 3
partial least squares, 3, 241–242
sparse multi-block partial least squares
regression, 3, 143, 144, 148–149
directed acyclic graph (DAG)
Bayesian framework for inference, 278–279
hybrid methods, 274–276
Markov equivalence classes, 272f
method and software, 281t
overview, 271–273
PC algorithm, 274
search-and-score methods, 273–274
structure equation models, 279–280
directed cyclic graphs (DCGs), 266, 276–277
directed graphical models
Bayesian framework for DAG inference,
278–279
directed acyclic graph
hybrid methods, 274–276
method and software, 281t
overview, 271–273
PC algorithm, 274
search-and-score methods, 273–274
directed cyclic graphs, 266, 276–277
overview, 265–266, 276–277
QTL directed dependency graph, 277–278
Dirichlet mixture model, BCC method,
252–253
distant eQTL, 267
dM. See DNA methylation
dNA. See also Encyclopedia of DNA
Elements
CNVs, 132, 143–147, 201–203, 207, 214
GWAS
AMID GWAS, 19–20
GWAS-tailored software, 29–32
imputation, 8–9
methods for single marker test, 9–19
number of publications by year, 8f
overview, 7–8
plasma lipid levels, 28–29
rare variant associations, 20–28
workflow of, 10t
targeted cancer treatment and, 218
DNA methylation (DM), 201–202
mdmodules, 136
TCGA project, 132
dPCA (differential principal component
analysis), 128
driver mutations, 308, 331, 400–401

Drosophila targets, 286, 293
drug discovery, 419. See also drug-pathway association analysis
drug sensitivity, 421–422. See also drug-pathway association analysis
drug-pathway association analysis iPad method, 425–430, 434t–435t
iterative signature algorithm, 435
NCI-60 project, 431–433
overview, 419–422
EGOT lncRNA, 406
EM (expectation-maximization) algorithm, 115–117, 311
embryonic stem cells (ESCs), 385
EMT (epithelial-to-mesenchymal transition), 296
Encyclopedia of DNA Elements (ENCODE), 71, 81, 87, 109, 375, 382
CAGE data from, 389–390
K562 and GM12878 data, 378–379, 389f
transcriptome profiling in human cells from, 398
ensemble clustering (consensus clustering), 242–243, 260f
epigene analysis, 75–76
epithelial-to-mesenchymal transition (EMT), 296
EQC (external quality control), MetaQC package, 40–41
eQTL mapping, 267–270, 281t
eQTL meta-analysis, 43
eQTLs. See expression quantitative trait loci
ESCs (embryonic stem cells), 385
E-step, EM algorithm, 116
estimates
analysis results by applying MCP to each outcome separately, 191t–192t
analysis results of gMCP, 185t, 193t–194t
analysis results of gMCP with Laplacian penalty, 195t–198t
analysis results of sparse gMCP, 186t–187t
BCC method, 254–256
estimated graph, simulated data sets, 210f
JIVE method, 245–246, 247f
mass-action-based model for gene expression regulation, 360–363
eukaryotic gene expression, 374–375
evidence aggregation methods, combining p-values analysis, 42–44
exon membership vector, FCC, 79
exonic lncRNAs, 400f
exons
co-splicing mechanisms and, 76
co-splicing networks, 78f
expectation-maximization (EM) algorithm, 115–117, 311
exploratory methods for multisource data. See multi-source data, exploratory methods for expression quantitative trait loci (eQTLs)
causal inference and, 270–271
cis-, 87, 94, 268–271, 269f
diabetes genes, 94–97
differential coexpression analysis, 281–282
directed acyclic graph, 271–276, 281t
hybrid methods, 274–276
overview, 271–273
PC algorithm, 274
search-and-score methods, 273–274
directed graphical model estimation using, 276–280
Bayesian framework for DAG inference, 278–279
overview, 276–277
QTL directed dependency graph, 277–278
structure equation models, 279–280
eQTL mapping, 267–270, 281t
gene transcripts, 95f
identifying regulatory SNPs, 132
local eQTL versus distant eQTL, 267
modeling genetic information flow in network, 88–91
overview, 265–266
protein QTL data, 281
trans-, 87, 94, 268–271
external quality control (EQC), MetaQC package, 40–41
factorization methods, 241–242
false discovery rate (FDR), 202, 336, 336f, 337f
LOAD brain study, 103, 103f
posterior inference using, 208
FCC (frequent coupled cluster), 77–80, 78f
FDR. See false discovery rate feed-forward loop (FFL), 294–296, 295f
FEM. See fixed effects model Fermi-Dirac combination of targets, 290–292, 291f
FFL (feed-forward loop), 294–296, 295f
Fisher’s method, microarray meta-analysis, 42–43
meta-analysis of GWAS, 16
MetaDE package, 42–44, 46f, 47–48, 49t, 51
fixed effects model (FEM)
meta-analysis of GWAS, 16
MetaDE package, 44
formal framework, exploratory methods for multisource data, 240–241
450

Index

FOS regulatory factor, 75–76
fragments per kilobase of exon per million fragments mapped (FPKM), 74
frequent coupled cluster (FCC), 77–80, 78f
GA (genetic algorithm), 280
GABP regulatory factor, 75
gain-of-function (GOF), PARADIGM-SHIFT pathway method, 319
GAM (generalized additive models), 224–225, 225f
GASS IncRNA, 406
Gaussian graphical models (GGMs), 203
Gaussian mixture model (GMM), 153
GBM (Glioblastoma Multiforme), 219, 226, 406, 407, 409
GCV (generalized cross validation), 225
GE. See gene expression
GENCODE, 396
gen expression (GE). See also histone modifications; mass-action-based model for gene expression regulation; transcription factor binding
allele-specific gene expression, 269–270
eQTLs and, 268f
JIVE method and, 248–251
mdmodules, 136
pathway methods for analysis of, 307–308
TCGA project, 132
Gene Expression Omnibus (GEO), 37, 109, 397, 406
gen expression profiles
drug-pathway association analysis, 421
iFad method, drug-pathway association analysis, 422
iPad method, drug-pathway association analysis, 425
gen expression regulation
analysis of osmotic shock in yeast, 366–367
change-point model, 358–360
characterizing link between regulatory processes, 368–371
data integration to study, 5–6
estimation and inference, 360–363
overview, 356–358
scoring protein-level regulation changes, 367–368
simulation study, 363–366
gene membership vector, FCC, 79
gene regulation pathways, 421
Gene Set Enrichment Analysis (GSEA), 307, 323
gene sets with lowest FDR, 337f
overview, 421–422
somatic mutations in cancer genomes, 335–336
gene set methods, 307
gene sets, 337f
generalized additive models (GAM), 224–225, 225f
generalized cross validation (GCV), 225
Genetic algorithm (GA), 280
genetic interaction, 201–203
GenMiR++, 297–298
Genotype of Tissue Expression (GTEx) project, 87
GEO (Gene Expression Omnibus), 37, 109, 397, 406
germline variants, somatic mutations in cancer genomes, 333
GES (greedy equivalence search) algorithm, DAG, 273
GGMs (Gaussian graphical models), 203
GI50 value, drug sensitivity, 421, 422
Gibbs sampling procedure, 254–255
GISTIC2 algorithm, 334
Glioblastoma Multiforme (GBM), 219, 226, 406, 407, 409
GLYK, 274
Glymour, Clark, 274
GM12878 data, 378–379
gMCP. See group MCP
gMM (Gaussian mixture model), 153
GOF (gain-of-function), PARADIGM-SHIFT pathway method, 319
graphical (regression) networks, miRNAs, 297
graphical models. See also Bayesian graphical models; directed graphical models
graphical model and network analysis, 4 probabilistic, 310
Greedy equivalence search (GES) algorithm, DAG, 273
group MCP (gMCP), 102, 180
analysis results of, 185, 193–194t
Index

451

analysis results of, with Laplacian penalty, 195–198
defined, 175
marker selection under heterogeneity model, 175–176
GSEA. See Gene Set Enrichment Analysis
GTex (Genotype of Tissue Expression) project, 87
GWAS. See genome-wide association studies
H3K27me3 transcription factor, 146
H3K4me3 mark, 387–388
Hammersley Clifford theorem, 204
HCPs (high CpG promoters), 391
heat kernel model, cancer genomics, 310
HER2 tumor subtype, 161–162
heterogeneity model
meta-analysis of GWAS, 16–17
MetaDE package and, 49
penalized integrative analysis of high-dimensional omics data, 174–180
heterogeneous stock mice, 171, 183–188
high CpG promoters (HCPs), 391
high-dimensional transcriptional and drug sensitivity profile. See drug-pathway association analysis
high-dimensionality, 219
high-order cooperativity, in transcription regulatory networks, 71–73
histone modifications (HMs), 109
cause or consequence relationship between gene expression, 393–394
ENCODEx K562 and GM12878 data, 378–379
framework for integrating with gene expression data, 376–377
interplay between TF binding and other chromatin features, 391–392
machine learning methods used in predictive models, 377–378
ModENCODE Early Embryo data, 379
Mouse ESC data, 379
overview, 374–375
performance evaluation of models, 378
predicting differential gene expression, 388–389
predicting expression levels for genes with HCP and LCP content, 391
predicting expression levels of human promoters, 383f
predicting expression of noncoding genes, 389–390
predicting gene expression by combining with TF binding, 385–388
predicting gene expression from, 382–385
regulatory signals in distal regions, 392–393
Yeast and Fly data, 379
hmChIP database, 109
HMs. See histone modifications
homogeneity model
Cochran’s homogeneity test, 49
penalized integrative analysis of high-dimensional omics data, 174–175
horizontal meta-analysis, 1, 2f
hot spots, eQTL, 267
HOTAIR lncRNA, 408–409
HotNet algorithm, 310, 323, 326
applying to mutation data, 340–341
cfg file used for running on TCGA GBM data, 353
diffusion time used for PPI networks, 343f
overview, 336–340
parameter selection, 341–343
HOTTIP lncRNA, 406
HOX family genes, 145
hybrid methods, DAG, 274–276
hypothesis settings, MetaDE package, 45, 46t, 47–48
iASeq model, ASB, 123–125, 127f
iBAG. See integrative Bayesian analysis of genomics data models
iCluster method, 220
exploratory methods for multisource data, 243
joint analysis with lasso iCluster method, 45, 162f
ifad method, drug-pathway association analysis, 422–425
ILP (integer linear program), 295f
individual structures
JIVE method, 244–248, 247f
miRNA and gene expression, 248–251, 250f
inference
Bayesian framework for DAG inference, 279–279
causal inference, eQTLs, 270–271
ifad method, 424–425
mass-action-based model for gene expression regulation, 360–363
network inference algorithms, 298
posterior inference using false discovery rates, 208
information flow, modeling, 88–91
Ingenuity PathwayAnalysis (IPA) system, 142–143, 146, 146f
inner lasso penalty, SNP, 176
inner MCP penalty, 176
integer linear program (ILP), 347
Integrated Druggable Genome Database Project, 431
integrated pathway level (IPL), 316
integrated subtypes of colorectal cancer, 164–165
integration with biological pathway information, 3
integrative analysis. See also Bayesian graphical models; latent variable approach, integrative clustering analysis; penalized integrative analysis of high-dimensional omics data of ChIP-X data, 108–128 allele-specific binding in ChIP-seq, 123–128 ChIP-chip peak calling, 118–123 correlation motif approach, 112–118 general problem setting and motivations, 110–112 overview, 108–110 of gene regulation coupled transcription-splicing modules, 77–81 overview, 66–68 splicing modules, 73–77 transcriptional modules, 68–73 integrative Bayesian analysis of genomics data models (iBAG models) linear, 221–224 non-linear extensions, 224–226 overview, 220–221 integrative quantitative models. See also correlation motif model, 118–123 joint peak calling by, 121f JASPAR database, 81 Ji, H., 122 IPA (Ingenuity PathwayAnalysis) system, 142–143, 146, 146f iPad method, drug-pathway association analysis, 425–430, 434–435f IPL (integrated pathway level), 316 IQC (internal quality control), MetaQC package, 40 iterative signature algorithm (ISA), 435 IW (inverse Wishart) prior, 204 jActiveModules plugin, 309 JAMIE method correlation motif model, 118–123 joint peak calling by, 121f JASPAR database, 81 Ji, H., 122 JIVE method. See joint and individual variation explained method joint analysis with lasso iCluster method, 162f joint and individual variation explained (JIVE) method, 244–251 application to TCGA data, 248–251 defined, 238 estimation, 245–246, 247f gene expression (GE) and, 250f illustrative example, 246–248 MetaPCA package, 55, 56f microRNA (miRNA) and, 250f model, 244–245 joint clustering, 256, 258f joint NMF, 133f, 134–139 joint structure JIVE method, 244–248, 247f miRNA and gene expression, 248–251, 250f Kaplan-Meier curve lung squamous cell carcinoma (lung SCC), 410f ovarian cancer (OvCa), 410f Kaplan-Meier survival analysis, 138f KEAP1 mutation, 321–322, 321f KEGG database, 335, 336f
Index

453

LOAD (late-onset Alzheimer’s disease) brain study, 102–103, 103f
local eQTL, 267
Lock, E. F., 152, 245, 248
LOF (loss-of-function), PARADIGM-SHIFT pathway method, 319
log-ratios of copy number, lung cancer sample, 159f
Logsden, Benjamin, 279
long noncoding RNAs (lncRNAs) identifying, 405f
integrating lncRNA expression, 402–405
integrative analyses of in four cancer types, 406–413
overview, 398–399
repurposing microarray data to interrogate lncRNA expression, 399–402
long tail phenomenon, 332f
loss-of-function (LOF), PARADIGM-SHIFT pathway method, 319
low CpG promoters (LCPs), 391
lung squamous cell carcinoma (lung SCC), 406, 407, 409

macular degeneration, 20f
MAPE (meta-analysis pathway enrichment) methods, 52–55, 53f
markers, integrative analysis, 170
Markov chain Monte Carlo (MCMC), 204, 207–208, 255, 345, 424
Markov equivalence classes (MECs), 272f
Markov property, MRF, BayesGraph for TCGA integration, 204–205
MASS software package, 32
mass spectrometry (MS), 357, 366–367
mass-action-based model for gene expression regulation
analysis of osmotic shock in yeast, 366–367
change-point model, 358–360
characterizing link between regulatory processes, 368–371
estimation and inference, 360–363
overview, 356–358
scoring protein-level regulation changes, 367–368
simulation study, 363–366
MAT peak calling method, 122
matrix decomposition, 422, 425, 435
Matrix eQTL software, 270
maximum p-value (maxP) statistic method, MetaDE package, 44, 46f, 47–48, 49, 51
max-min hill-climbing (MMHC) algorithm, 274–275
MCC (multiclass correlation) method, 51
mCCA (multiple canonical correlation analysis), 242

KEGG MEDICUS database, 431
KEGG pathways, 422
drug-pathway associations identified by iPad, 434t–435t
network-regularized joint NMF method and, 142
K-means clustering method, 153–154
Laplace prior, 223
Laplacian penalty, 182–183, 195t–198t
"large d, small n" data, 170
lasso (least absolute shrinkage and selection operator)
inner lasso penalty, SNP, 176
joint analysis with lasso iCluster method, 162f
lasso iCluster method, 162f
Lasso prior, 223
overview, 426
lasso iCluster method, 162f
Lasso prior, 223
latent variable approach, integrative clustering analysis
every example, 161–162
Gaussian mixture model, 153
integrated subtypes of colorectal cancer, 164–165
K-means clustering method, 153–154
latent variable models, 156–159
model selection, 160–161, 163–164
overview, 151–153
principal component analysis, 154–155
subtype analysis and, 156
TCGA colorectal cancer data set, 163
late-onset Alzheimer’s disease (LOAD) brain study, 102–103, 103f
LCPs (low CpG promoters), 391
LD (linkage disequilibrium), 10t, 171
least absolute shrinkage and selection operator.
See lasso
ligand-based approach, drug-pathway association analysis, 420
linear iBAG model
clinical model, 222–224
mechanistic model, 222
overview, 221–224
posterior probabilities, 228f–230f
prognostic markers, 231–232
linkage disequilibrium (LD), 10t, 171
LINKER approach, network integration of genetically regulated gene expression, 92
linker genes, 322–323, 324f
liver tissue
gene transcripts in tissue containing eQTLs that overlap with insulin QTLs, 95f
top five genes ranked by TIE scores, 99t
lncRNAs. See long noncoding RNAs

MACS software package, 32
mass spectrometry (MS), 357, 366–367
mass-action-based model for gene expression regulation
analysis of osmotic shock in yeast, 366–367
change-point model, 358–360
characterizing link between regulatory processes, 368–371
estimation and inference, 360–363
overview, 356–358
scoring protein-level regulation changes, 367–368
simulation study, 363–366
MAT peak calling method, 122
matrix decomposition, 422, 425, 435
Matrix eQTL software, 270
maximum p-value (maxP) statistic method, MetaDE package, 44, 46f, 47–48, 49, 51
max-min hill-climbing (MMHC) algorithm, 274–275
MCC (multiclass correlation) method, 51
mCCA (multiple canonical correlation analysis), 242

© in this web service Cambridge University Press
www.cambridge.org

Cambridge University Press
978-1-107-06911-4 - Integrating Omics Data
Edited by George Tseng, Debashis Ghosh and Xianghong Jasmine Zhou
Index

More information

www.cambridge.org
Index

MCMC (Markov chain Monte Carlo), 204, 207–208, 255, 345, 424
MCP. See minimax concave penalty
MDC (modular differential connectivity), LOAD brain study, 103, 103f
MDL (minimum description length), DAG, 273
mdmodules (multi-dimensional modules) biological relevance of, 136–138 clinical associations of, 138–139
MDRM. See multidimensional regulatory module
MDS (multidimension scaling), 55
ME (microRNA expression), 132, 136, 379, 389f, 390
mean decreased Gini, TF binding, 380
mean squared errors (MSE), 430
mechanistic iBAG model, 222
MECs (Markov equivalence classes), 272f
MEMo method, 309
Memorial Sloan-Kettering Cancer Center (MSKCC) Prostate Oncogenome Project, 405–406
Mendelian randomization, 271
Menezes, R. X., 202
messenger RNA (mRNA) concentration, 369f
gene expression, 201–203
iBAG models, 220–226
targeted cancer treatment and, 218
meta-analysis methods, 3–4. See also Bayesian Consensus Clustering method; meta-analysis of GWAS; principal components analysis
meta-analysis of GWAS, 7–33 age-related macular degeneration, 20f
AMD GWAS, 19–20
GWAS-tailored software, 29–32
imputation, 8–9
methods for single marker test, 9–19
overview, 7–8
plasma lipid levels, 28–29
rare variant associations, 20–28
approaches, 23
burden tests that assume a distribution of variant effect sizes, 25–26
burden tests that assume variants have similar effect sizes for a simple burden test in study k, the impact of multiple rare variants, 24
conditional analyses, 26–28
meta-analysis of single-variant association test statistics, 24
Monte Carlo method for empirical assessment of significance, 26
overview, 20, 22–23
sharing summary statistics, 23–24
summary of loci, 21f
variable threshold tests with an adaptive frequency threshold, 25
workflow of, 10f
meta-analysis pathway enrichment (MAPE) methods, 52–55, 53f
meta-analytic framework for the liquid association (MetaLA) method, 58
metabolic pathways, 421
MetaClust package, 39f, 56–58
MetaDE package, 39f, 42–52, 59–61
MetaDiffNet network, 58
MetaGeneModule approaches, MetaClust package, 57
MetaLA (meta-analytic framework for the liquid association) method, 58
MetaNetwork package, 39f, 58
MetaOmics software
MetaClust package, 39f, 56–58
MetaDE package, 42–52, 59–61
MetaNetwork package, 39f, 58
MetaPath package, 39f, 52–55, 59–61
MetaPCA package, 3, 39f, 55–56
MetaPredict package, 39f, 58–59
MetaQC package, 38–42, 59–61
overview, 37–38
MetaPath package, 39f, 52–55, 59–61
MetaPCA package, 3, 39f, 55–56
MetaPredict package, 39f, 58–59
MetaQC package, 38–42, 39f, 59–61
MetaSKAT software package, 32
MetaSparseKmeans method, 56–57, 57f
methods and materials. See also names of specific methods
BayesGraph for TCGA integration, 205–208
coupled transcription-splicing modules, 77–80
splicing modules, 73–74
transcriptional modules, 68–70
methylation data
DNA methylation, 132, 136, 201–202
IGF1R gene, 225f
Metropolis-Hastings ratio, 279, 360–362
MIAT lncRNA, 408
microarrays. See also clustering; latent variable approach, integrative clustering analysis
combining effect sizes analysis, 44
combining p-values analysis, 42–44
evidence aggregation methods, 42–44
order statistics methods, 44
combining ranks analysis, 44–45
conventions, 2
for detecting differentially expressed genes, 38, 40–42

© in this web service Cambridge University Press www.cambridge.org
Cambridge University Press 978-1-107-06911-4 - Integrating Omics Data
Edited by George Tseng, Debashis Ghosh and Xianghong Jasmine Zhou
Index
More information
Index 455

modular differential connectivity (MDC), LOAD brain study, 103, 103f
molecular interaction network, 146f
Monte Carlo method, meta-analysis of GWAS, 26
Mouse ESC data, 379
MRF (Markov random fields), BayesGraph for TCGA integration, 204–205
mRNA. See messenger RNA
MS (mass spectrometry), 357, 366–367
MSE (mean squared errors), 430
MSigDB gene set collection, 335
MSKCC (Memorial Sloan-Kettering Cancer Center) Prostate Oncogene Project, 405–406
M-step, EM algorithm, 116–117
multi-cancer markers, 171
multiclass correlation (MCC) method, 51
Multi-Dendrix algorithm, 343–344, 346–347, 346f, 349–351
multidimension scaling (MDS), 55
multi-dimensional modules (mdmodules)
biological relevance of, 136–138
clinical associations of, 138–139
multidimensional regulatory module (MDRM) regulatory analysis and, 146–147
synergistic functions across multiple dimensions, 145–146
multimodality, TCGA, 201
multi-platform datasets, schematic representation of, 218f
multiple canonical correlation analysis (mCCA), 242
data set integration (MDI), 243
multiple data sets, 172, 189–190. See also integrative analysis
multi-source data, exploratory methods for BCC method, 251–260
application to TCGA data, 257–260
Dirichlet mixture model, 252–253
estimation, 254–256
illustrative example, 256–257
multisource model, 253–254
overview, 251–252
clustering methods, 242–243
computational burden, 261
factorization methods, 241–242
formal framework, 240–241
JIVE method, 244–251
application to TCGA data, 248–251
estimation, 245–246
illustrative example, 246–248
model, 244–245
overview, 238–240
MutationAssessor, 308
mutations. See also somatic mutations in cancer genomes
nongenetic regulation of gene expression, 86–91

neural network-based iBAG model, 227–232

network analysis, SNP data, 182–183

network integration of genetically regulated gene expression
diabetes genes, 93–100
differential connectivity in coexpression network, 100–102

LINKER approach, 92

LOAD brain study, 102–103

modeling genetic information flow, 88–91

overview, 86–88

PCST problem, 92–93

PRINCE approach, 91–92

random walk approach, 91

network regulators, miRNAs as, 294–298

network-regularized joint NMF method, 133f

IPAS system, 142–143

KEGG pathways, 142

miRNAs, 141–143

overview, 139–141

sparse network-regularized NMF algorithm, 140–141

network-regularized multiple NMF (NRNMF) framework, 140

Newton, Michael A., 208

network regulators, miRNAs as, 294–298

network-regularized joint NMF method, 133f

IPAS system, 142–143

KEGG pathways, 142

miRNAs, 141–143

overview, 139–141

sparse network-regularized NMF algorithm, 140–141

network-regularized multiple NMF (NRNMF) framework, 140

Newton, Michael A., 208

next-generation sequencing (NGS), 37, 397, 402, 404

NFE2L2 (Nrf2) oncogene, 320–322, 321f

NFYB regulatory factor, 75–76

NGS (next-generation sequencing), 37, 397, 402, 404

NHGRI (National Human Genome Research Institute), 421

NMF. See nonnegative matrix factorization (NMF), 55

defined, 3

joint NMF, 133f, 134–139

Normal-Exponential prior, 223

Normal-Gamma prior, 223, 225–226

not allele specific (NS) state, ASB, 124

Nrf2 (NFE2L2) oncogene, 320–322, 321f

NRNMF (network-regularized multiple NMF) framework, 140

NS (not allele specific) state, ASB, 124

nucleosome positioning, 109

observed occurrence index (OOI) analysis results by applying MCP to each outcome separately, 191t–192t

analysis results of gMCP, 185t, 193t–194t

analysis results of gMCP with Laplacian penalty, 195t–198t

analysis results of sparse gMCP, 186t–187t

defined, 188

oligonucleotide aCGH, 403–404

Oncodrive FM method, 308–309

"one drug – one target" approach, 419–420

OOI. See observed occurrence index optimization algorithm, iPad method, 426–430

order statistics methods, combining p-values analysis, 44

outer MCP penalty, 176

ovarian cancer (OvCa), 406, 407, 409

overexpressing genes, 298–299

overlapping lncRNAs, 400f

overlapping subjects, 17

OWL (Web Ontology Language), 306

p53 protein, 313–314

PageRank teleporting random walk, 92

pairwise correlation matrices (PCMs), 101

pancreatic islets, 95f

PARADIGM pathway method, 298

applications of, 317, 319

interaction parameters, 316–317

interactions and probabilistic factors, 314–316

matrix of activities, 318f

modeling components, 312f

overview, 310–312

variables, 312–314

PARADIGM-SHIFT pathway method analysis of NFE2L2 and KEAP1 mutations, 319f

applications of, 320–322

calculating shift scores, 319f

overview, 319–320

parameter tuning, iPad method, 430

partial correlation, 211

partial least squares (PLS), 3, 241–242

partitioning explained variation, 235
passenger mutations, 308–309, 331
Pathifier method, 307
PathOlogist method, 307
PathScan approach, 334
 See also drug-pathway association analysis
Pathway Commons database, 306
pathway databases, cancer genomics, 305–306
Pathway Interaction Database, 306
pathway-based drug discovery (polypharmacology), 420. See also drug-pathway association analysis
pathway-based mutation assessment, 308–309
PBR (potential binding regions), ChIP-chip peak calling, 120, 121f
PC algorithm, DAG, 274–275, 281t
PCA. See principal components analysis
PCAN-R1 lncRNA, 411, 412f, 413
PCAN-R2 lncRNA, 411, 412f, 413
PCGs (protein encoding genes), 398
PCMs (pairwise correlation matrices), 101
PCST (prize-collecting Steiner tree) method, 92–93, 309
PDI s (protein-DNA interactions) genome, 108
peak calling, ChIP-chip, 118–123
PECA (Protein Expression Control Analysis), 357–358
penalization composite, 180
methods, 5
penalized integrative analysis of high-dimensional omics data
data quality control and processing, 189–190
examples, 170–173
heterogeneity model marker selection, 175–180
overview, 174
heterogeneous stock mice, WTCCC, 183–188
homogeneity model marker selection, 175
overview, 174
interplay among SNPs, 181–183
network analysis, 182–183
pathway analysis, 181–182
overview, 170
PenPC algorithm, 275
phenotype-based approach, drug-pathway association analysis
defined, 420
iPad method, 422–425
iPad method, 425–430
phyloCSF method, 411
PicTar targeting prediction algorithm, 287t, 288
Ping-Pong algorithm, 132
PTA targeting prediction algorithm, 287t, 288, 291f, 293f
plasma lipid levels, meta-analysis of GWAS, 28–29
PLS (partial least squares), 3, 241–242
polypharmacology (pathway-based drug discovery), 420. See also drug-pathway association analysis
positive markers, iBAG models, 227–232, 233t
posterior inference for genes, 212f
using feature discovery rates, 208
posterior probabilities
 linear iBAG model, 228f–230f
 non-linear iBAG model, 228f–230f
potential binding regions (PBR), ChIP-chip peak calling, 120, 121f
PPI (protein-protein interaction) networks, 81, 87, 265–266, 336–338, 338f, 343f
pQTL (protein QTL) data, 281
PR (Product of ranks) method, MetaDE package, 45
predicting gene expression by combining with TF binding and histone modifications, 385–388
differential gene expression, 388–389
with high and low CpG content, 391
from histone modifications, 382–385
of noncoding genes, 389–390
from TF binding, 379–382
PRINCE approach, 91–92
principal components analysis (PCA), 55
consensus clustering, 260f
exploratory methods for multisource data, 241, 247f
integrative clustering analysis, 154–155
mechanistic iBAG model, 222
MetaQC package, 41, 60f
PRINS lncRNA, 406
prize-collecting Steiner tree (PCST) method, 92–93, 309
probabilistic factors, PARADIGM pathway method, 314–316
probabilistic graphical models, PARADIGM pathway method, 310
probability model, BayesGraph for TCGA integration, 205–207
Product of ranks (PR) method, MetaDE package, 45
prognostic markers, iBAG models, 227–232
protein concentration, 369f
protein encoding genes (PCGs), 398
Protein Expression Control Analysis (PECA), 357–358
protein QTL (pQTL) data, 281
protein synthesis (translation), 356–357, 364f, 369f
protein-DNA interactions (PDIs) genome, 108
protein-level regulation changes, scoring, 367–368
protein-protein interaction (PPI) networks, 81, 87, 265–266, 336–338, 338f, 343f
proteomics, 357, 359. See also specific protein entries
QC measures. See quality control measures
QDG (QTL directed dependency graph), 277–278
QTL directed dependency graph (QDG), 277–278
QTLnet method, 278
quality control (QC) measures
MetaQC package, 40–41
Single Nucleotide Polymorphisms, 15t
RACE (rapid amplification of cDNA ends), 411, 412f, 413
random effects model (REM)
meta-analysis of GW AS, 16–17
MetaDE package, 44
random forest (RF) method, 377, 380, 381f, 388, 393
random walk approach, 89f, 91
RankProd (RP) method, MetaDE package, 44
rapid amplification of cDNA ends (RACE), 411, 412f, 413
rare variant associations, meta-analysis of GWAS
approaches, 23
burden tests that assume distribution of variant effect sizes, 25–26
burden tests that assume variants have similar effect sizes for a simple burden test in study k, the impact of multiple rare variants, 24
conditional analyses, 26–28
meta-analysis of single-variant association test statistics, 24
Monte Carlo method for empirical assessment of significance, 26
overview, 20, 22–23
results for meta-analysis of gene-level rare variant association test, 30
sharing summary statistics, 23–24
summary of loci, 21t
variable threshold tests with an adaptive frequency threshold, 25
RAREMETAL software package, 32
RDF (Resource Description Framework), 306
Reactome pathways, 422
recurrent heavy subgraphs (RHSs), 68, 69–70, 69f
regression (graphical) networks, miRNAs, 297
regularization methods, 5
regularization parameters, 177
regulatory processes, gene expression, 368–371
relevance networks, miRNAs, 296
REM. See random effects model
Resource Description Framework (RDF), 276
reversible edge (REV) proposal, 279
reversible-jump Markov chain Monte Carlo (MCMC), 360, 367
RF (random forest) method, 377, 380, 381f, 388, 393
RHSs (recurrent heavy subgraphs), 68, 69–70, 69f
RMST IncRNA, 408
RNA. See also microRNAs
IncRNAs
identifying, 405f
integrating IncRNA expression, 402–405
integrative analyses of in four cancer types, 406–413
overview, 398–399
repurposing microarray data to interrogate IncRNA expression, 399–402
mRNA concentration, 369f
gene expression, 201–203
iBAG models, 220–226
targeted cancer treatment and, 218
siRNAs, 412f, 413
ncRNAs, 398
RNA sequencing (RNA-seq), 87, 398–402, 406
RNA synthesis (transcription), 356–357, 369f
rna22 targeting prediction algorithm, 287l, 288
RNA-seq (RNA sequencing), 87, 398–402, 406
Roadmap Epigenomics project, 109
RP (RankProd) method, MetaDE package, 44
rth ordered p-value (rOP) statistic method, MetaDE package, 44, 467, 47–48, 49t, 51
S. cerevisiae data with osmotic stress, 370f
sample statistical analysis plan, 12t
SCNA (somatic copy number alteration) data, 399, 403–406, 409
search-and-score methods, DAG, 273–274
SEMs (structure equation models), 277, 279–280
separate clustering, 256, 258f
sequence kernel association tests (SKAT), 22
Sequence Read Archive (SRA), 37
sequencing cancer genome/exome, 333–334
short interfering RNAs (siRNAs), 412f, 413
SIF (Simple Interchange Format), 306
SIFT, 308
signaling transduction pathways, 421
Signaling Pathway Impact Analysis (SPIA), 307
significance test, iPad method, 430
significantly mutated subnetworks, 336–343
Simple Interchange Format (SIF), 306
simulated data sets, 210f
simulation study
BayesGraph for TCGA integration, 208–211
mass-action-based model for gene expression regulation, 363–366, 365f
single marker test, meta-analysis of GWAS, 9–19
single nucleotide polymorphisms (SNPs), 9, 333
analysis results by applying MCP to each outcome separately, 191t–192t
analysis results of gMCP, 18t
analysis results of sparse gMCP, 186t–187t
arrays, 404
eQTLs and, 267, 268f
meta-analysis of GWAS, 18t
MetaDE for marker gene detection, 42
penalized integrative analysis of high-dimensional omics data, 181–183
network analysis, 182–183
pathway analysis, 181–182
quality control, 15t
TCGA project, 132
single-data-set analysis, 171
single-nucleotide variants (SNVs), 333–334
single-variant association test statistics
Cochran-Mantel-Haenszel method, 24
meta-analysis of GWAS, 24
singular value decomposition (SVD), 246
siRNAs (short interfering RNAs), 412f, 413
SKAT (sequence kernel association tests), 22
skeleton, DAG, 272
skewed to the nonreference allele (SN) state, 124
small noncoding RNAs (sncRNAs), 398
sMBPLS. See sparse multi-block partial least squares regression
SMR (standardized mean ranks), MetaQC package, 41
SN (skewed to the nonreference allele) state, 124
sncRNAs (small noncoding RNAs), 398
SNMRMF (sparse network-regularized NMF) algorithm, 140–141
SNPs. See single nucleotide polymorphisms
SNVs (single-nucleotide variants), 333–334
software, 29–32. See also MetaOmics software
somatic copy number alteration (SCNA) data, 399, 403–406, 409
somatic mutations in cancer genomes
 cancer (subtype) analysis, 350–352
DAVID tool, 335
Dendrix algorithm, 343–346, 347–349
GSEA algorithm, 335–336
Multi-Dendrix algorithm, 343–344, 346–347, 349–351
overview, 331–333
sequencing, 333–334
significantly mutated subnetworks, 336–343
sparse group MCP (gMCP), 178–180, 186t–187t
sparse multiple linear least squares regression (sMBPLS), 3, 133f, 143, 144, 148–149
multidimensional regulatory module, 145–147
overview, 143–144
sparse network-regularized NMF (SNMRMF) algorithm, 140–141
SPIA (Signaling Pathway Impact Analysis), 307
splicing modules
exons, 76–77
identifying novel functions associated with co-splicing but not coexpression, 76
methods and materials, 73–74
transcriptional and epigenomic analysis, 75–76
sponge effect, miRNAs, 298
squared Euclidean error function, NMF, 134–135
SR (Sum of ranks) method, MetaDE package, 45
SRA (Sequence Read Archive), 37
SRF transcription factor, 145
SSC (sum of squared cosines), MetaPCA package, 55
standardized mean ranks (SMR), MetaQC package, 41
STAT1 transcription factor, 145
statistical methods. See integrative analysis; latent variable approach, integrative clustering analysis; MetaOmics software
Stouffer’s method
MetaDE package, 43, 46t, 47–48, 49t, 51
microarray meta-analysis, 43
structural variants (SVs), 333–334
structure equation models (SEMs), 277, 279–280
structured pathway methods, analysis of gene expression, 307
Index

460

subtype analysis, integrative clustering analysis, 156
Sum of ranks (SR) method, MetaDE package, 45
sum of squared cosines (SSC), MetaPCA package, 55
sum of variance (SV), MetaPCA package, 55
support vector machine (SVM), 293, 377, 388, 393
SV (sum of variance), MetaPCA package, 55
SVD (singular value decomposition), 246
SVM (support vector machine), 293, 377, 388, 393
SVs (structural variants), 333–334
TAF8 regulatory factor, 75
target exclusivity, miRNAs, 289
target prediction algorithms, miRNAs, 294
ComiR, 287, 288
miRanda, 287, 287t
mirSVR, 287t, 289
mirWIP, 287t, 289
overview, 286–287
PicTar, 287t, 288
PITA, 287t, 288
rna22, 287t, 288
TargetScan, 287–288, 287t
target-based approach
differential coexpression, 101
drug-pathway association analysis, 420
targets, miRNAs, 290
TargetScan targeting prediction algorithm, 287–288, 287t
TCGA project. See The Cancer Genome Atlas project
TP binding. See transcription factor binding
TF+HM model, 386–387, 386f
TFBSs (transcription factor binding sites), 108
TFs. See transcription factors
The Cancer Genome Atlas (TCGA) project, 132, 152, 163, 165f. See also Bayesian graphical models; somatic mutations in cancer genomes
application of BCC method to data, 257–260
application of JIVE method to data, 248–251
BayesGraph for TCGA integration, 211–214
cancer types and samples for integrative analysis, 212t
integrative clustering analysis, 163
TCGA GBM study, 334
third-order tensor, transcriptional regulatory modules, 69f
TIE score, 97–98, 99f
TieDIE pathway method, 322–328, 327f
TileMap peak calling method, 122
time course experiments
analysis of osmotic shock in yeast, 366–367
change-point model, 358–360
characterizing link between regulatory processes, 368–371
estimation and inference, 360–363
overview, 356–358
scoring protein-level regulation changes, 367–368
simulation study, 363–366
TIPC (trait-IP correlation), 97–98
T-Lymphocyte Helper/Suppressor Profile. See CD4/CD8 ratio
top scoring pair (TSP) algorithm, prediction analysis, 58–59
Tpi1 gene, 99t
trait-IP correlation (TIPC), 97–98
transcription (RNA synthesis), 356–357, 369f
transcription, defined, 201
transcription factor binding sites (TFBSs), 108
transcription factor (TF) binding
cause or consequence relationship between gene expression, 393–394
ENCODE K562 and GM12878 data, 378–379
framework for integrating with gene expression data, 376–377
interplay between histone modification and other chromatin features, 391–392
machine learning methods used in predictive models, 377–378
ModENCODE Early Embryo data, 379
Mouse ESC data, 379
overview, 374–375
performance evaluation of models, 378
predicting differential gene expression, 388–389
predicting expression levels for genes with HCP and LCP content, 391
predicting expression of noncoding genes, 389–390
predicting gene expression by combining with histone modifications, 385–388
predicting gene expression from, 379–382
regulatory signals in distal regions, 392–393
Yeast and Fly data, 379
transcription factors (TFs), 71–72, 72f
gene expression, 87, 89f
GLI1, 110, 111f, 112
GLI3, 110, 111f, 112
H3K27me3, 146
predicting expression levels of human promoters, 381f
regulatory mechanism of, 392f
SRF, 145
STAT1, 145
transcriptional analysis, splicing modules, 75–76
transcriptional modules
high-order cooperativity and regulation in transcription regulatory networks, 71–73
methods and materials, 68–70
transcriptional regulation, 72f, 379, 387–388, 391–392
transcriptomics meta-analysis. See also mass-action-based model for gene expression regulation for differential network detection, 58
MetaClust package, 56–58
MetaDE package, 42–52, 59–61
MetaNetwork, 58
MetaPath package, 52–55, 59–61
MetaPCA, 55–56
MetaPredict, 58–59
MetaQC package, 38–42, 59–61 overview, 37–38
trans-eQTLs, 87, 268–271, 269f
translation (protein synthesis), 356–357, 364f, 369f
trans-regulated gene expression, 87
TRe-CASE model, 270
TSP (top scoring pair) algorithm, prediction analysis, 58–59
taxCdsPredict method, 411
undirected networks, 190
uniform design (UD), sampling method, 160
unsupervised analysis
Bayesian consensus clustering (BCC), 3 cluster analysis, 3
iCluster method, 3
MetaSparseKmeans method, 3
overview, 3
untargeted approach, differential coexpression, 101
variable selection, 170, 174
variables
PARADIGM pathway method, 312–314
variable threshold tests with an adaptive frequency threshold, 25
Venn diagram
enriched pathways identified by MAPE, 60f
incRNA located in SCNA regions of cancer, 410f
subtype-specific IncRNA in cancers, 408f
vertical multi-omics analysis, 1, 2f
V-fold cross-validation, 178
v-structures, DAG, 272–273
walking in gene network, 89f
Web Ontology Language (OWL), 306
Wellcome Trust Case Control Consortium (WTCCC), 171, 183–188
WGCNA package, 102
white adipose tissue
gene transcripts in tissue containing eQTLs that overlap with insulin QTLs, 95f
top five genes ranked by TIE scores, 99t
whole-cell pathway model
active subnetwork search and discovery, 309–310
PARADIGM pathway method, 310–319
PARADIGM-SHIFT pathway method, 319–322
pathway databases, 305–306
pathway methods, 307–308
pathway-based mutation assessment, 308–309
TieDIE pathway method, 322–328
whole-exome sequencing, 333
whole-genome sequencing, 333
WTCCC (Wellcome Trust Case Control Consortium), 171, 183–188
Yeast and Fly data, 379