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1

Instantons in Quantum Mechanics

1.1 Introduction

In this chapter we start our study of non-perturbative effects by looking at the
simplest case: Quantum Mechanics (QM), which can be regarded as a QFT in one
dimension. We will focus on effects due to instantons, i.e. to non-trivial solutions to
the Euclidean equations of motion (EOM). Typically, if g is the coupling constant,
these effects go like

e−A/g. (1.1.1)

Notice that this effect is still small if g is small. However, it is completely invisible
in perturbation theory, since it displays an essential singularity at g = 0.

Instanton effects are responsible for one of the most important quantum mechan-
ical effects: tunneling through a potential barrier. This effect changes qualitatively
the structure of the quantum vacuum. In a potential with a perturbative ground
state degeneracy, like the one shown on the left hand side of Fig. 1.1, tunneling
effects lift the degeneracy: there is a single ground state, and the energy difference
between the ground state and the first excited state is of the form (1.1.1),

E1(g)− E0(g) ∼ e−A/g. (1.1.2)

In a potential with an unstable or “false” vacuum, like the one shown on the right
hand side of Fig. 1.1, states trapped in the false vacuum will eventually decay due to
tunneling effects. This means in particular that the ground state energy associated
to this vacuum has a small imaginary part,

E0(g) = Re E0(g)+ i Im E0(g), Im E0(g) ∼ e−A/g, (1.1.3)

which also has the dependence on g typical of an instanton effect and is invisible
in perturbation theory.
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4 Instantons in Quantum Mechanics

Figure 1.1 Two quantum mechanical potentials where instanton effects change
qualitatively our understanding of the vacuum structure.

In this chapter, in order to understand this type of non-perturbative effect in
detail, we will focus on observables which vanish in conventional perturbation the-
ory, but have contributions due to instantons. In the case of vacuum decay, this will
be the inverse lifetime of the particle; in the case of degenerate vacua, it will be
the energy splitting (1.1.2). In our discussion we will focus on one-dimensional
problems, where one can find very explicit results for instanton effects.

1.2 Quantum Mechanics as a one-dimensional field theory

In this chapter we will consider quantum systems in one dimension, with a
Hamiltonian of the form,

H = 1

2
p2 +W (q), (1.2.1)

where W (q) is the potential. We will set � = 1. If this Hamiltonian supports bound
states, one basic question to ask is what is the energy of the ground state. This can
of course be addressed by elementary methods, like stationary perturbation theory,
but we want to formulate the problem in the language of path integrals, so that the
intuition gained in this way can be applied to QFTs. The ground state energy of the
quantum mechanical system described by (1.2.1) can be extracted from the small
temperature behavior of the thermal partition function,

Z(β) = tr e−βH . (1.2.2)

Indeed, if we have a non-degenerate, discrete spectrum with energies

E0 < E1 < E2 < · · · , (1.2.3)

the thermal partition function can be written as

Z(β) =
∞∑

n=0

e−βEn , (1.2.4)
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1.2 Quantum Mechanics as a one-dimensional field theory 5

therefore

E0 = − lim
β→∞

1

β
log Z(β). (1.2.5)

On the other hand, the thermal partition function admits a path integral represen-
tation in terms of the Euclidean theory, in which we perform a Wick rotation to
imaginary time

t →−it, (1.2.6)

and, because of the trace in (1.2.2), we have to consider periodic trajectories q(t)
in imaginary time,

q(−β/2) = q(β/2), (1.2.7)

where β is the period of the motion. After Wick rotation, the path integral involves
the Euclidean action S(q),

S(q) =
∫ β/2

−β/2
dt

[
1

2
(q̇(t))2 +W (q(t))

]
. (1.2.8)

The thermal path integral is then given by

Z(β) =
∫

D[q(t)]e−S(q), (1.2.9)

where the integration is performed over periodic trajectories.
We note that the Euclidean action can be regarded as an action in Lagrangian

mechanics,

S(q) =
∫ β/2

−β/2
dt

[
1

2
(q̇(t))2 − V (q)

]
, (1.2.10)

where the potential is

V (q) = −W (q), (1.2.11)

i.e. it is the inverted potential of the original problem.
It is possible to compute the ground state energy by using Feynman diagrams.

We will assume that the potential W (q) is of the form

W (q) = 1

2
q2 +Wint(q), (1.2.12)

where Wint(q) is an interaction term. Then, the path integral defining Z can be
computed in perturbation theory by expanding in Wint(q). For concreteness, let us
assume that we have a quartic interaction (i.e. an anharmonic, quartic oscillator)

Wint(q) = g

4
q4. (1.2.13)
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6 Instantons in Quantum Mechanics

At leading order in g, we find,

Z(β) = ZG(β)

(
1− g

4

∫
dτ 〈q(τ )q(τ )q(τ )q(τ )〉G + · · ·

)
. (1.2.14)

Here, ZG(β) is the Euclidean partition function of the theory with the unperturbed
Hamiltonian

H = 1

2
p2 + 1

2
q2, (1.2.15)

which is nothing but the thermal partition function of a harmonic oscillator with
normalized frequency ω = 1,

ZG(β) = 1

2 sinh
(
β

2

) . (1.2.16)

The subscript G indicates that, from the point of view of the path integral, this is
a Gaussian theory. The bracket 〈· · · 〉G denotes a normalized vacuum expectation
value (vev) in this Gaussian theory, which can be computed by using Wick’s theo-
rem. As usual, the calculation can be organized in terms of Feynman diagrams. We
will actually work in the limit in which β → ∞, since in this limit many features
are simpler, for example the form of the propagator, which reads

〈q(τ )q(τ ′)〉G =
∫

dp

2π

eip(τ−τ ′)

p2 + 1
= e−|τ−τ ′|

2
. (1.2.17)

The Feynman rules are illustrated in Fig. 1.2. Since we want to calculate log Z(β),
only connected vacuum diagrams contribute. In the limit β → ∞, the quantity
log Z(β) should be given by an overall factor of β, times a β-independent constant,
as follows from (1.2.5). Diagrammatically, this is due to the following: the standard

τ τ
e−|τ−τ |

2

−g

4

Figure 1.2 Feynman rules for the quantum mechanical quartic oscillator.
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1.2 Quantum Mechanics as a one-dimensional field theory 7

1 2a
2b

3a
3b

3c

3d

Figure 1.3 Feynman diagrams contributing to the ground state energy of the
quartic oscillator up to order g3.

Feynman rules in position space lead to k integrations, where k is the number of
vertices in the diagram. One of these integrations just gives as an overall factor the
“volume” of spacetime, and this is the overall factor of β. Therefore, in order to
extract E0(g), we can just perform k − 1 integrations over R.

It follows that the ground state energy has the following perturbative expansion:

E0(g) = 1

2
+

∞∑
k=1

ak

(g

4

)k
, (1.2.18)

where ak can be computed diagrammatically as follows. Let A(c)k be the set of
independent, connected quartic diagrams with k vertices. For k = 1, 2, 3, these
diagrams are shown in Fig. 1.3. Then,

ak =
∑
�∈A(c)k

s�I�, (1.2.19)

where s� is the multiplicity of the graph � and I� is the corresponding Feynman
integral. Here, the multiplicity is simply the number of contractions which lead to
the same topological graph �, and we can interpret it as the “number” of graphs
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8 Instantons in Quantum Mechanics

Table 1.1 Multiplicities of the Feynman diagrams in Fig. 1.3

Diagram 1 2a 2b 3a 3b 3c 3d
Multiplicity 3 36 12 288 288 576 432

with the topological structure � (in the literature one sometimes finds other defi-
nitions of the multiplicity, differing typically in the normalization of the coupling
constant).

It is now straightforward to calculate E0(g) to order g3. The multiplicities of the
diagrams shown in Fig. 1.3 are given in Table 1.1. These numbers can be checked
by taking into account that the total symmetry factor for a connected diagram with
k quartic vertices is given by

1

k! 〈(x
4)k〉(c), (1.2.20)

where

〈(x4)k〉 =
∫∞
−∞ dx e−x2/2x4k∫∞
−∞ dx e−x2/2

. (1.2.21)

is the Gaussian average. By Wick’s theorem, this counts all possible pairings
among k four-vertices, and we have to take the connected piece. Using that

〈x2k〉 = (2k − 1)!! = (2k)!
2kk! (1.2.22)

we find, for example,

〈x4〉(c) = 〈x4〉 = 3,

1

2! 〈(x
4)2〉(c) = 1

2

(〈(x4)2〉 − 〈x4〉2) = 48, (1.2.23)

in agreement with the results shown in Table 1.1. Putting together the Feynman
integrals with the multiplicities, we find, for the different diagrams of Fig. 1.3,

1 : 3

4

2a : − 36

16

∫ ∞

−∞
e−2|τ |dτ = −36

16
,

2b : − 12

16

∫ ∞

−∞
e−4|τ |dτ = −12

16
· 1

2
,

3a : 288

64

∫ ∞

−∞
e−|τ1|−|τ2|−|τ1−τ2|dτ1 dτ2 = 288

64
· 3

2
, (1.2.24)
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1.2 Quantum Mechanics as a one-dimensional field theory 9

3b : 288

64

∫ ∞

−∞
e−2|τ1|−2|τ2|−2|τ1−τ2|dτ1 dτ2 = 288

64
· 3

8
,

3c : 576

64

∫ ∞

−∞
e−|τ1−τ2|−|τ1|−3|τ2|dτ1 dτ2 = 576

64
· 5

8
,

3d : 432

64

∫ ∞

−∞
e−2|τ1−τ2|−2|τ2|dτ1 dτ2 = 432

64
.

This gives,

E0(g) = 1

2
+ 3

4

(g

4

)
− 21

8

(g

4

)2 + 333

16

(g

4

)3 +O(g4). (1.2.25)

In Chapter 4 we will be interested in understanding this series in detail, and in
particular we will look at the behavior of its coefficients at high order. The method
of Feynman diagrams, although it emphasizes the parallelism with field theory, is
not the most efficient method to use in order to generate the perturbative series for
the ground state. In order to do that, it is better to use the Schrödinger equation(

−1

2

d2

dx2
+ x2

2
+ gx4

4

)
ψ(x) = E0(g)ψ(x). (1.2.26)

We know that, for g = 0, the solution to this equation is the ground state of the
harmonic oscillator, which is just the Gaussian e−x2/2. We will then write down an
ansatz for the solution of the form

ψ(x) = e−x2/2
∞∑

n=0

(g

4

)n
Bn(x), B0(x) = 1. (1.2.27)

Plugging this ansatz into the above equation, and writing the energy as in (1.2.18),
we find the following recursive equation for the Bk(x) and the ak :

x B ′k(x)−
1

2
B ′′k (x)+ x4 Bk−1(x) =

k∑
p=0

ak−p Bp(x). (1.2.28)

To solve this recursion, we further write

Bi (x) =
2i∑

j=1

x2 j (−1)i Bi, j . (1.2.29)

By looking at the term of degree zero in (1.2.28), we find that

ak = (−1)k+1 Bk,1. (1.2.30)

The coefficients Bi, j satisfy the recursion relation

2 j Bi, j = ( j + 1)(2 j + 1)Bi, j+1 + Bi−1, j−2 −
i−1∑
p=1

Bi−p,1 Bp, j . (1.2.31)
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10 Instantons in Quantum Mechanics

This recursion can be easily solved to high orders, and one finds for the very first
coefficients,

a1 = 3

4
, a2 = −21

8
, a3 = 333

16
, a4 = −30885

128
, (1.2.32)

in agreement with the Feynman diagram calculation (1.2.25).

1.3 Unstable vacua in Quantum Mechanics

Most quantities of interest in a quantum theory will have both perturbative and
non-perturbative contributions. For small coupling, perturbative contributions are
typically dominant. Therefore, in order to better understand the idiosyncrasies of
non-perturbative effects in quantum theory, it is convenient to focus on quantities
which vanish in perturbation theory.

A situation where non-perturbative effects dominate the physics is the case of
unstable minima in QM. Let us consider a one-dimensional potential W (q) which
has a relative minimum at the origin q = 0. Near this minimum, the potential is of
the form

W (q) ≈ 1

2
q2 +O(g), (1.3.1)

where g is a coupling constant which gives the strength of the anharmonicity.
Examples of such a situation are the cubic potential

W (q) = 1

2
q2 − gq3, (1.3.2)

which is depicted in Fig. 1.4 (left), and the inverted quartic potential

W (q) = q2

2
+ g

4
q4, g = −λ, λ > 0, (1.3.3)

which is shown on the right hand side of Fig. 1.4. It is clear that these potentials do
not admit bound states, since a particle trapped near the minimum of the potential
at q = 0 will eventually decay by tunneling through the barrier. However, this is
a priori not detected by doing conventional stationary perturbation theory in the
coupling constant g or λ: in both cases, one finds an infinite power series for the
energy of, say, the ground state. In particular, for the inverted quartic oscillator, this
series is obtained from (1.2.25) by simply setting g = −λ:

E0(λ) = 1

2
− 3

4

(
λ

4

)
− 21

8

(
λ

4

)2

− · · · . (1.3.4)

This is then a situation where perturbation theory is unable to describe the essential
physics of the problem. What are the interesting quantities that can be computed
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