Ockham’s Razors

Ockham’s razor, the principle of parsimony, states that simpler theories are better than theories that are more complex. It has a history dating back to Aristotle, and it plays an important role in current science. The razor also gets used in everyday life and in philosophy. This book evaluates the principle and discusses its many applications. Fascinating examples from different domains provide a rich basis for contemplating the principle’s promises and perils. It is obvious that simpler theories are beautiful and easy to understand; the hard problem is to figure out why the simplicity of a theory should be relevant to saying what the world is like. In this book, the ABCs of probability theory are succinctly developed and put to work to describe two “parsimony paradigms” within which this problem can be solved.

Ockham’s Razors

A User’s Manual

ELLIOTT SOBER
for Ezra William Didier-Sober
Contents

Acknowledgments

Introduction 1

1. **A history of parsimony in thin slices** 4
 (from Aristotle to Morgan)
 - The naming ceremony 4
 - Aristotle’s principle that nature does nothing in vain 6
 - How Ockham wields his razor 9
 - Geocentric and heliocentric astronomy 12
 - Descartes and Leibniz on God and the laws of nature 22
 - Descartes’s derivations 24
 - Leibniz on the best of all possible worlds 26
 - Newton on avoiding the luxury of superfluous causes 33
 - Hume on the principle of the uniformity of nature 37
 - Kant’s demotion of God 40
 - Whewell’s consilience of inductions 44
 - Mill tries to cut the razor down to size 49
 - James Clerk Maxwell, the evangelical physicist 50
 - Morgan’s canon 51
 - Concluding comments 58

2. **The probabilistic turn** 61
 - Two philosophies of probability 61
 - A probability primer and the basics of Bayesianism 64
 - Ockham’s razor for Bayesians 84
 - Two kinds of prior probability 85
 - Jeffreys’s simplicity postulate 87
 - Popper’s objection to Jeffreys’s postulate 91

 vii
Contents

Popper, falsifiability, and corroboration 93
Popper’s characterization of simplicity 97
Parsimony and non-first priors 99
Likelihoods and common causes 102
On similarity 119
A three-way Reichenbachian distinction 120
Bayesian Ockham’s razor 123
Frequentism and adjustable parameters 128
How many causes for a single effect? 135
Bayesian model selection 138
The world of model selection 140
How the two parsimony paradigms differ 141
Why a false model can be more predictively accurate (and closer to the truth) than a true one 145
What the two parsimony paradigms have in common 147
Concluding comments 148

3 Parsimony in evolutionary biology – phylogenetic inference 153

Common ancestry 154
Some history 162
Ockham meets Markov 169
Two models that entail mirroring 176
Syplesiomorphies 178
The Smith/Quackdoodle theorem 180
Estimating character states of ancestors – two examples in which mirroring fails 181
Another criterion – statistical consistency 184
Still another criterion – when is parsimony more reliable than guessing? 188
Forwards and backwards 189
Estimating the character state of a leaf – anthropomorphism and comparative psychology 190
Parsimony old and new 197
Concluding comments 197
Appendices 200

4 Parsimony in psychology – chimpanzee mind-reading 207

Experiments 209
Conflicting interpretations 212
Contents ix
Whiten’s arrows 215
The two parsimony paradigms 217
Lessons from the blackbox 221
A different mind-reading model that also entails no screening-off 226
Learning and screening-off 227
Associations, correlations, and testing 229
Parsimony redux 231
A cross-chimpanzee comparison that is not about screening-off 232
Behaviorism versus mentalism 234
Concluding comments 239

5 Parsimony in philosophy 244
Naturalisms 244
Atheism and the problem of evil 246
Absence of evidence and evidence of absence 252
The mind/body problem 253
The causal efficacy of the mental 260
Moral realism 264
Misinterpreting screening-off 268
Nominalism and Platonism about mathematics 272
Solipsism 276
The problem of induction 283
Concluding comments 286

References 291
Index 309
Acknowledgments

I am very grateful to a very large number of people for the help they have given me on this project. My debts are to Marilyn McCord Adams, Kristin Andrews, Martin Barrett, John Basl, David Baum, Craig Baxter, David Blumenfeld, Hayley Clatterbuck, Jordan Ellenberg, Branden Fitelson, Simon Fitzpatrick, Malcolm Forster, Hank Frankel, Martha Gibson, Mike Goldsby, Alison Gopnik, Paula Gottlieb, Casey Hart, Dan Hausman, Casey Helgeson, Cecelia Heyes, Jack Justus, Sharon Kaye, Matt Kopec, Marc Lange, James Lennox, Brian McLoone, Jeffrey McDonough, James Messina, Wayne Myrvold, Steven Nadler, Greg Nirshberg, Shannon Nolen, John Norton, Ron Numbers, David O’Brien, Emi Okayasu, Sarah Paul, Trevor Pearce, Mike Roche, William Roche, Bas Rokers, Eric Sampson, Daniel Schneider, Michael Shank, Michael Schon, Russ Shafer-Landau, Michael Shank, Larry Shapiro, Alan Sidelle, George Smith, Dennis Stampe, Mike Steel, Eric Stencil, Reuben Stern, Michael Stoeltzer, Michael Titelbaum, Michael Tomasello, Olav Vassend, Peter Vranas, Naftali Weinberger, Allen Wood, and Rega Wood. I also have benefitted from holding a University of Wisconsin William F. Vilas Professorship.