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Introduction: a multiscale and turbulent-like world

1.1 Data from the real world

Data analysis is an essential part of scientific research and engineering applica-

tions. A proper data analysis method will provide a better understanding of the

process under consideration, for example, extracting useful parameters to validate

an existing theory or to inspire a new theory. However, data from the real world,

such as field-observation data, well-controlled laboratory experiments, or numerical

simulation, generally possess several problems. For instance, the data length may

be too short to satisfy stationary or ergodic conditions, or the mechanism behind the

data may be nonlinear, etc. In Figures 1.1 through 1.3 are several examples from

the real world, demonstrating common problems of real datasets.

Figure 1.1a displays a collected oxygen saturation index obtained from a

MAREL network (Automatic Monitoring Network for Littoral Environment,

Ifremer, France) from the period January 1 to December 31, 2010. The large

variation of the measured oxygen saturation index shows the nonstationarity of

the data. For example, a high intensity of oxygen saturation index was observed at

September 3, 2010. As shown in Section 1.3, to mimic this nonstationary event,

high-order Fourier harmonic components are required. Moreover, sometimes the

sensor fails to collect data, due to maintenance problems or failure of the system.

This missing data problem is typical of field observation data. To emphasize

this, we replotted a 10-day portion of the data in Figure 1.1b, which shows a

discontinuous curve due to the problem of the data missing. This imposes a

difficulty for the Fourier-based data analysis method, for which a uniform time

step is often required. To see the irregular time step more clearly, the time interval

δt has been shown between two successful measurements in Figure 1.1c. Visually,

the time step δt demonstrates a strong intermittent distribution with large values

of δt. Another aspect of this data set is that the underlying physical mechanism

is nonlinear. It means that if one can write a governing equation for the oxygen
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Figure 1.1 a) Collected oxygen saturation index on the time period January 1 to
December 31, 2010, with a sampling time of 20 minutes. The data were collected
by a sensor belonging to the MAREL network (Automatic monitoring network for
littoral environment, Ifremer, France). Due to several reasons, e.g., failure of the
sensor, there are several missing data points. A strong event was also observed
around September 1, 2010, showing the nonstationarity of the process. b) An
enlargement part on the time period January 1 to January 10, 2010. c) The time
interval δt between two successful measurements. The intermittent distribution of
δt demonstrates the problem of missing data or irregular time step.

saturation index, this equation must be nonlinear. Therefore, the difficulties of

this type of data set are missing data/irregular time steps, both nonstationarity and

nonlinearity.

Turning to another aspect of the real world data, namely varying sample

size, considered here is an example from the global drifter program. Figure 1.2a

illustrates several Lagrangian trajectories obtained from the global drifter program.

Due to failures of the devices, battery life-time, etc., the life-time T of drifters varies

from one to another. They provide measured physical quantities with different

lengths. For example, the drifter collects data every six hours, corresponding

to four data points per day. Therefore, a finite life-time T means a finite data

sample, for example, L = 4T . Figure 1.2b shows the measured distribution of T .

It has an exponential distribution, indicating a large variation of the data length.
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Figure 1.2 a) Illustration of the Lagrangian drifter trajectories obtained from the
global drifter program. b) Measured pdf of the drifter life-time T . The measured
pdf p(T) has an exponential distribution. The drifter collected several physical
quantities of the ocean with a sampling time of six hours. This provided a large
variation of the data length.

More precisely, the mean and standard deviation of T are T � 370 and T � 360

days. This will impose difficulties when performing traditional spectrum analysis,

since each drifter covers different time scales. This happens also in well-controlled

laboratory experiments. For example, in Lagrangian turbulence experiments, the

tracer particles are tracked experimentally in a turbulent flow with thousands of

realizations (Toschi and Bodenschatz, 2009). Due to the finite measurement volume

and the limitation of the particle tracking technique, the tracking period for each

individual particle is different. We therefore have the same difficulty as the one for

Lagrangian drifters.

The presence of a forcing scale, or strong deterministic forcing, is another impor-

tant feature of the data sets from natural sciences, especially geophysics. For exam-

ple, in geoscience, daily cycle and annual cycle are present in several collected

data, and in marine data sets, the tidal cycle is also present for many series. This is

typically the case for sea surface temperature, air temperature, river daily discharge,

etc. Figure 1.3 displays a collected water temperature θ(t) oC from the MAREL

network mentioned earlier in this chapter. The collected temperature possesses a

strong annual cycle, a deterministic forcing from the solar-earth system. As shown

in Chapter 4, the scaling behavior (see discussion in next subsection and more detail

in Chapter 3), an important feature of complex systems, will be perturbed by such

deterministic forcing. There exists a continuous range of excited time scales, at

least between the annual cycle and the daily cycle, namely multiscale fluctuations.

One of the objectives of this analysis is to try to better understand the statistical

relationship between scales. Whether or not this relationship can be experimentally

extracted from the data is one of the essential contents of this book. Some general
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Figure 1.3 Collected water temperature data on the period March 24 to December
13, 2010. These data are automatically recorded every 20 minutes by the MAREL
network. A strong annual cycle is observed. Note that this deterministic-like forc-
ing is a typical structure in the geophysical data, which might induce difficulties
in the scaling analysis.

comments on this issue are proposed in the next section, and more details are

provided on this topic in the rest of this book.

Summarized in this list are the main properties of the data collected from the

real world. They are:

1. finite sample size;

2. nonstationarity and nonlinearity;

3. presence of stochastic fluctuations, as well as deterministic forcing;

4. multiscale, or multiscaling statistical properties;

5. irregular time step, or missing data.

An ideal time-series analysis method should be able to handle all difficulties

imposed by these the above listed properties to reveal the physics represented by

the data.

1.2 Multiscale phenomena

As mentioned in Section 1.1 multiscale fluctuations are relevant in many complex

systems in which many time or spatial degrees of freedom are present and may

interact with each other. The most classical complex system is the case of turbulent

flows (Frisch, 1995; Tsinober, 2009). In three-dimensional turbulent flows, a large

range of time and spatial scales are involved and interact with each other, at least in

the so-called inertial range. The famous Richardson-Kolmogorov energy cascade

picture has been proposed to interpret the turbulent flow in a phenomenological

way: the energy is transferred from large- to small-scale structures, until the viscos-

ity scale, where the energy is converted into heat (see Kolmogorov theory in Chap-

ter 2 or Frisch, 1995). Figure 1.4a displays a one second portion of the longitudinal
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Figure 1.4 a) A one second portion of the measured longitudinal turbulent velocity
in a wind tunnel experiment at Johns Hopkins University with a Taylor microscale
based Reynolds number Reλ � 720. The measured velocity is fluctuating over
a large range of time scales. b) The experimental Fourier power spectrum in a
log-log plot. Power-law behavior E( f ) ∼ f −β is observed with a β close to the
Kolmogorov 1941 theory prediction 5/3.

velocity obtained from a wind tunnel experimental with a Taylor’s microscale based

Reynolds number Reλ � 720. This experimental Eulerian velocity fluctuates over

different time scales. High intensity events, known as nonstationary events, were

observed. The corresponding Fourier power spectrum E( f ) is shown in Figure 1.4b

in a log-log plot, in which a 5/3 power-law relation from the Kolmogorov 1941

theory is illustrated by a dashed line. A power-law behavior is observed on the range

10 < f < 1000 Hz. It corresponds with the Kolmogorov’s 1941 phenomenological

theory (see more discussion in Chapter 2).

Another example is the Lagrangian velocity obtained from a high-resolution

numerical simulation. Figure 1.5a shows the Lagrangian velocity along a Lagrangian

trajectory and 1.5b the corresponding energy dissipation rate ε(t)/〈ε〉. This

trajectory was chosen on purpose to display a “vortex trapping” event around

t/τη = 100. The corresponding energy dissipation is fluctuating over a large

range of amplitude. For the present trajectory, it is as high as 23 times the mean

energy dissipation rate, showing a strong intermittent event. In fact, the highest

energy dissipation rate could reach more than 100 times of the mean energy

dissipation rate. Note that a continuous range of frequencies/scales is observed.

The Richardson-Kolmogorov cascade picture is essentially a multiscale description

of turbulent flows (Tsinober, 2009).

Hydrodynamic turbulent flows are governed by the Navier-Stokes equation (see

Chapter 2). Unfortunately, a mathematical solution is unreachable for the moment.

Therefore, a phenomenological theory, such as the Kolmogorov 1941 theory, must

be verified experimentally or numerically. In the content of multiscale analysis, the
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Figure 1.5 a) An example of turbulent velocity along a Lagrangian trajec-
tory obtained from a high-resolution direct numerical simulation with a Tay-
lor microscale-based Reynolds number Reλ � 400. A vortex trapping event is
observed around t/τη = 100. b) The measured energy dissipation rate ε(t)/〈ε〉
along the same Lagrangian trajectory, showing a strong intermittent/nonstationary
event around time 50 < t/τη < 120.

essential job of the data analysis is thus to reveal the statistical relations between

different scales to verify theory predictions or to provide “seeds” for new theories.

There also exists numerous turbulent-like complex systems, such as finan-

cial activities (Ghashghaie et al., 1996; Mantegna and Stanley, 1996; Schmitt,

Schertzer, and Lovejoy, 1999; Li and Huang, 2014); environmental variables in the

sea (Schmitt et al., 2009; Zongo and Schmitt, 2011; Huang, Schmitt, and Gagne,

2014); daily river discharge (Tessier et al., 1996; Dahlstedt and Jensen, 2005;

Huang et al., 2009a), etc., to name but a few. Unfortunately, an exactly governing

equation for such a complex system cannot be written down. For now, various

time series/data from field observations or well-controlled laboratory experiments

have been obtained. A proper multiscale treatment of the data will provide a better

understanding of the dynamics of such complex systems in order to extract the

scale-dependent information/parameters. New theoretical considerations might be

inspired by the data.

1.3 The Fourier-based methodology and its potential shortcomings

1.3.1 Linear asymptotic approximation

There are many time-frequency analysis methods (Cohen, 1995; Flandrin, 1998).

Their basic idea originated in part from the Fourier analysis. It can be interpreted
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as representing a given signal/function x(t), by a given basis ϕ, i.e.,

x(t) =
∫

ν∈R

∫

t′∈R

ψ(t′, ν)ϕ(t, t′, ν)dνdt′ (1.1)

where ψ is a coefficient (function) that can be determined as:

ψ(t, ν) =
∫

t′∈R

x(t)ϕ(t, t′, ν)dt′ (1.2)

Here, the basis function ϕ also can be interpreted as an integral kernel of Equation

1.2 (Cohen, 1995). It is an asymptotic approximation: the signal is asymptotically

approximated by the chosen basis (function) ϕ. Usually, the property of the chosen

basis is well known. Then the given signal is checked to see what it looks like

with respect to the chosen basis (function) ϕ. For example, when the trigonometric

function is chosen, the classical Fourier transform is obtained, for which ψ depends

only on the frequency:

ψ(f ) =
∫ +∞

−∞
f (x)ei2π fxdx (1.3)

in which ψ(f ) is the Fourier coefficient. ψ(f ) is independent with x, correspond-

ing to a global property of x. Therefore, the Fourier analysis cannot identify a

nonstationary event (Cohen, 1995; Flandrin, 1998; Huang et al., 1998; Huang,

2009).

Another example is the Wavelet transform, where ψ depends on time t and the

scale a:

ψ(a, t) =
1

√
a

∫

t′∈Rn

x(t′)ϕ

(

t′ − t

a

)

dt′ (1.4)

where n is the dimension of the space, ϕ(t) is the so-called mother wavelet and a

is a dilatation parameter. To be a mother wavelet, ϕ(t) should satisfy some condi-

tions. (For details on wavelet theory, see Daubechies (1992); Meyer (1995); Mallat

(1999)). The wavelet transform approach may also be considered as an adaptive-

window Fourier transform (Huang et al., 1998). Note that the wavelet transform

is local on different scales. Therefore, it is efficient for detecting and analyzing

nonstationary events. However, as shown in Chapter 4, the wavelet-based method

is still affected by the high-order harmonic problem. Indeed, this problem cannot

be overcome if the basis is chosen a priori.

In general, the traditional approach for time-frequency analysis is to choose basis

functions a priori. Once the basis (function) is fixed, the information that can be

extracted from the data is determined. They are also energy-based approaches: only

when the event contains enough energy can it then be detected by such methods

(Huang et al., 1998; Huang and Wu, 2005).
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8 Introduction: a multiscale and turbulent-like world

1.3.2 High-order Fourier harmonic: mathematical or physical?

To show experimentally the problem of high-order harmonic components, here the

Fourier analysis of the nonlinear Duffing equation is considered. It is shown that

the high-order harmonic component is a requirement of the mathematical approach

used here. They are not observed in the physical domain.

The nonlinear Duffing equation is written as

d2x

dt2
+ x(1 + εx2) = b cos(2π�t) (1.5)

in which ε is a nonlinear parameter. It can be considered as a pendulum with forcing

function b cos(�t), in which its pendulum length varies with the angle, showing

a nonlinear mechanism in this system through the parameter ε. The parameters

chosen in Equation (1.5) are ε = 1, b = 0.1 and � = 0.04. Note that ε = 1 is finite,

and thus Equation (1.5) presents a strong nonlinearity without analytical solution.

A fifth-order Runge-Kutta algorithm is performed to solve Equation (1.5) with an

initial condition [x(0), x′(0)] = [1, 1] and a sampling frequency of 10 Hz. Figure

1.6a shows the numerical solution. Some comments on the numerical solution are

provided in this section. Firstly, visually the wave profile of the numerical solution

x(t) is far from a sine or cosine wave; this is a nonlinear distortion (Huang et al.,

1998, 2011a). This deviation is a result of the nonlinear mechanism. Secondly, the

solution x(t) is smooth with a mean period T � 9.524, provided by the peak count-

ing method. It corresponds to a dominant frequency fD � 0.105 Hz. Therefore, a
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Figure 1.6 a) Numerical solution of the Duffing equation with ε = 1, b = 0.1,
� = 2π/25 and initial value [x(0), x′(0)] = 1. Note that the solution x(t) is
smooth, with a mean period T = 9.524, corresponding to a domain frequency
0.105 Hz. Hence a frequency f � 0.105 is unphysical. b) The corresponding
Fourier power spectrum. The forcing scale is observed at 0.04 Hz as the first peak
in E(f ). The second peak is at 0.105 Hz for the domain frequency. High-order
Fourier harmonic components are visible for f � 0.105 Hz. They are required by
the linear approximation of the Fourier transform.
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1.3 The Fourier-based methodology and its potential shortcomings 9

frequency much higher than this value is artificially found by the analysis method:

this is a “high-order harmonic problem” (Cohen, 1995; Flandrin, 1998).

Figure 1.6b shows the measured Fourier power spectrum in a log-log plot. A

strong peak is observed at f � 0.1, which agrees well with the dominant frequency

fD in the previous paragraph. Also noted were the existence of several peaks. The

first peak at f � 0.04 Hz, corresponds to the external forcing �. The other peaks

are larger than fD and thus considered as high-order harmonic components. They are

required by the Fourier analysis. This phenomenon is also observed for the Wavelet

transform; for more details, see Huang et al. (2011a).

To show the high-order harmonic more clearly, x(t) was reconstructed partially

from several Fourier coefficients, i.e., x̃(t) =
∫

f ∈F
F(f ) exp(−j2π ft)df for a given

range of f ∈ F. Figure 1.7 shows (a) the reconstruction x̃(t) from the domain
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Figure 1.7 a) Reconstructed x̃(t) from the domain frequency fD = 0.105 Hz.
b) Reconstructed x̃(t) from the first 30 Fourier modes. c) Residue δx(t) = x(t) −
x̃(t), in which the thick solid line is for the domain frequency and the thin line is for
the first 30 Fourier modes. Note that the high-order Fourier harmonic components
are the result of the difference between the Duffing solution x(t) and the sine wave
profile.
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10 Introduction: a multiscale and turbulent-like world

frequency fD, and (b) the reconstruction from the first 30 Fourier modes (resp. up

to f � 0.15 Hz, the first valley in between 0.1 < f < 0.2 Hz). As mentioned

here, the idea of the Fourier analysis is to approximate a given signal by using a

series of sine or cosine waves. Therefore, with an increasing number of Fourier

modes, the reconstructed signal becomes closer and closer to the original one.

Figure 1.7c displays the residue δx(t) = x(t) − x̃(t), in which the thick solid

line is for the dominant Fourier mode and the thin solid line is for the first 30

Fourier modes. This clearly shows that due to the so-called nonlinear distortion, the

high frequency oscillation (resp. the so-called high-order harmonics) is emerging

in δx(t). However, this high-frequency oscillation is not observed in the original

signal x(t). The high-order harmonic component is thus a requirement of the Fourier

analysis, but is not a physical requirement. It will be shown in Chapter 4 that by

introducing the idea of intrawave frequency modulation, the high-order harmonic

component is then constrained by the use of a Hilbert-based method.

1.4 Conclusion and further remarks

In conclusion of this introductory chapter, for several reasons, the data obtained

from the real world, natural sciences, and geosciences in general, are typically

nonstationary and nonlinear. The data also display multiscale properties with fluc-

tuations over a large range of scales. An ideal data processing method should

handle all aspects mentioned in the previous section: nonstationary, nonlinear, mul-

tiscale, irregular time step/missing data, etc. In recent years, several methodologies

have been proposed to handle such real data. These include the Wavelet transform,

Detrended Fluctuation Analysis, Empirical Mode Decomposition, and the associ-

ated Hilbert-Huang Transform. They have been successful in some aspects, but in

others, they have had difficulties. For example, the Wavelet transform is efficient

for nonstationary processes, but it might be affected by nonlinear processes (Huang

et al., 1998, 1999).

Therefore, before a method is applied to data from the real world, it is better to

know whether this method is suitable for the given type of data. For example, a

strong annual cycle is often observed in oceanic time series (see Figure 1.3). Due

to the presence of the annual cycle, the structure function analysis is strongly influ-

enced when the multiscaling/multifractal property of such data set is concerned.

The result is then biased (Huang et al., 2011a); see also discussion in Chapter 4.

In this book, the theory of homogeneous and isotropic turbulence in Chapter

2 is first recalled as the most classical multiscale complex system. Here the ideas

of energy cascade, intermittency, and multifractal are briefly described, along

with discussions on several intermittency models. Chapter 3 presents several

scaling stochastic processes, including self-similar processes and nonstationary
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