Bioinspired Actuators and Sensors

From authors renowned in the fields of engineering and biology, this is the first book to integrate sensor and actuator technology with bioinspired design.

Beginning with detailed descriptions of actuation and sensing mechanisms in plants and animals, the authors move on to apply these principles to synthetic design, offering in-depth knowledge of the development of state-of-the-art smart materials and devices. All of this is supported with a range of real-world applications, from tactile sensory systems in insects linked with the development of robotic hands, to the structural color systems in nature used to inspire camouflage technology. Further examples are given of successful designs along with their integrated autonomous systems, such as flying and swimming unmanned systems, and autonomous zero-energy building design.

With a wide interdisciplinary appeal, this is an ideal resource for any student, practicing engineer, or researcher interested in the connection between natural systems and synthetic design.

Minoru Taya is Nabtesco Endowed Chair Professor of Mechanical Engineering at the University of Washington and Director of the Center for Intelligent Materials and Systems (CIMS). He is a fellow of ASME, a fellow of American Academy of Mechanics, and Washington State Academy of Science.

Elizabeth Van Volkenburgh is Professor of Biology at the University of Washington. She is also President of the Society for Plant Signaling and Behavior and a Fellow of the American Association for the Advancement of Science.

Makoto Mizunami is a Professor in the Faculty of Science at Hokkaido University and Vice-Chairman of the Japanese Society for Comparative Physiology and Biochemistry.

Shûhei Nomura is Senior Curator of the Division of Terrestrial Invertebrates in the Department of Zoology at the National Museum of Nature and Science in Tokyo. He is also President of the Coleopterological Society of Japan.
Bioinspired Actuators and Sensors

MINORU TAYA
University of Washington, Seattle, USA

ELIZABETH VAN VOLKENBURGH
University of Washington, Seattle, USA

MAKOTO MIZUNAMI
Hokkaido University, Sapporo, Japan

SHÛHEI NOMURA
National Museum of Nature and Science, Tokyo, Japan
Contents

Preface

Acknowledgments

1 Introduction
1.1 Why do we need to harvest ideas from Nature? 1
1.2 Biological sensing 3
1.3 Biological actuations 4
1.4 Integration of sensing and actuation in biological species 4

2 Principles of structural organization and functions in biological species
2.1 Plant structures from elementary units and motor cells 6
2.1.1 Plant cells 6
2.1.2 The basics of plant motors and nastic movements 9
2.1.3 Nastic structures in plants 19
2.2 Structural and functional elements of insects 23
2.2.1 Constituents of the insect body 23
2.2.2 Exoskeleton and joints 24
2.2.3 Wing system and evolution 29
2.2.4 Insect size effects 37
2.2.5 Blood circulation 41

3 Sensory and motor systems of the living world
3.1 Sensory systems in living systems 44
3.1.1 Visual systems of insects 44
3.1.2 Olfactory systems of insects 52
3.1.3 Tactile sensing 57
3.1.4 Sensorial neuronal network 68
3.1.5 Structural colors in nature 77
3.1.6 Photon energy harvesting and storage 95
3.2 Movements in living systems 100
3.2.1 Morphing structures in plants 100
3.2.2 Morphing structure wings of birds, bat, and insects 123
3.2.3 Morphing in plasmodial slimes and caterpillars 134
3.2.4 Neural control of movements of insects 141
3.2.5 Swimming/flying, propulsion systems in bacteria, insects, fish, and birds 149
3.2.6 Attachment/detachment in animals and plants 179
3.3 Interactions between species of different kingdoms 201
3.3.1 Pollination 201
3.3.2 Plant defense system 206

4 Synthetic sensing materials and sensors 208
4.1 Sensing materials and sensors for mechanical environment (stress and strain) 208
4.1.1 Piezo resistivity 208
4.1.2 Piezoresistive silicon-based sensors 209
4.1.3 Capacitive sensors 210
4.1.4 Piezoelectric ceramics or polymer-based sensors embedded in polymer 212
4.1.5 Strain gauge sensors 215
4.1.6 MEMS with strain gauges 216
4.1.7 Conducting polymer-based sensors 216
4.1.8 Polymers embedded with conductive fillers 217
4.1.9 Mechanosensors based on permittivity change 219
4.1.10 Mechanosensors based on optical signals 220
4.1.11 Comparison of various tactile sensors 220
4.1.12 Mechanosensor based on Ionic Polymer Metal Composites 221
4.2 Sensing materials and sensors (temperature and humidity) 224
4.2.1 Temperature sensors 224
4.2.2 Humidity sensors 226
4.3 Chemical sensors 228
4.3.1 Sensors based on electrochemical signals 228
4.3.2 Metal oxide semiconductor sensors 231
4.3.3 Sensors based on potentiometry 232
4.3.4 Chemical sensors based on reactions 232
4.3.5 Chemical sensors based on mass change in the piezoelectric mechanical motions 233
4.3.6 Acoustic wave-based sensors 234
4.3.7 Cantilever type sensors 234
4.3.8 Applications 238
4.4 Sensing materials and sensors for IR 248
4.4.1 Infrared optical sensors 251
4.5 Magnetic field sensors 253
5 Synthetic active materials and actuators

5.1 Polymer-based active materials and actuators 255
 5.1.1 Electroactive polymers 255
 5.1.2 Review of shape memory polymers 281
 5.1.3 Electrochromic polymers 292
 5.1.4 Carbon nanotube as actuator material 297

5.2 Metal-based active materials, SMA and FSMA 300
 5.2.1 Fundamentals of shape memory alloys 301
 5.2.2 Modeling of SMA and FSMA 306
 5.2.3 Actuators based on SMA and FSMA 327
 5.2.4 SMA and FSMA composites 338
 5.2.5 New applications based on SMAs 350

5.3 Piezoelectricity 353
 5.3.1 Constitutive equations of linear piezoelectric materials 353
 5.3.2 Actuators based on piezoelectrics 356
 5.3.3 New piezoelectric materials 361

5.4 Summary of active materials and devices 366
 5.4.1 Actuators of high blocking force 366
 5.4.2 Actuators of high power 366
 5.4.3 Biomedical actuators 366
 5.4.4 Nanoactuators 367

6 Bio-inspired designs of sensors, actuators

6.1 Bio-inspired morphing structures 369
 6.1.1 Oscillating polymer gels 369
 6.1.2 Morphing wings of airplanes 371
 6.1.3 Miura-ori folding 376
 6.1.4 Deployable space structures 384

6.2 Bio-inspired tactile sensors 391
 6.2.1 Bioinspired hair-tactile sensors 391
 6.2.2 Microtrichia-inspired tactile sensor 394
 6.2.3 Design and process of dome-shaped tactile sensor 395

6.3 Synthetic photon energy harvesting system 403
 6.3.1 Synthetic solar energy design based on natural RC–LH1 404
 6.3.2 Dye-sensitized solar cells 404
 6.3.3 Energy-harvesting electrochromic window 409
 6.3.4 Bioinspired H₂ generation by using solar energy 411

6.4 Bioinspired optical layered structures, structured colors, camouflage skin, and color change strain sensor 412
 6.4.1 Synthetic design of morpho butterfly wing structures 412
 6.4.2 Moth-eye nanobumpy surfaces 413
 6.4.3 Color change strain sensor 415
 6.4.4 Synthetic design toward camouflage skins 418
Contents

6.5 Bioinspired inchworm actuators 423
 6.5.1 Inchworm actuator-based ferromagnetic shape memory alloy composite 425
6.6 Velcro adhesives, hydrophobic surfaces, and anti-fouling films 428
 6.6.1 Velcro fasteners 429
 6.6.2 Strong adhesives 431
 6.6.3 Surface design with various affinity to water 432
 6.6.4 Anti-fouling coating 434

7 Design of autonomous systems 436
7.1 Synthetic flying insects and birds 436
 7.1.1 MAV designs 438
7.2 Robofish and artificial cilia 446
 7.2.1 AUVs 446
 7.2.2 Cicia robotics 452
7.3 Autonomous building design toward zero-energy building 456

Appendix A. Classical lamination theory under hygroscopic strains 459
Appendix B. Analytical modeling of displacement and blocking force of a laminate dielectric (DE) bending actuator 470
Appendix C. Polymer gel modeling, calculation of potentials in regions I-III in Nafon based IPMC 474
Appendix D. Analytical model for SMA fiber/Al matrix composite 478
Appendix E. Modeling of effective magnetic properties of ferromagnetic shape memory alloy (FSMA) composite 483
References 486
Author Index 512
Subject Index 519

Color plates are to be found between pp. 338 and 339
Preface

This book is about ideas. Rather than painting human ingenuity as the product of esoteric human minds, here we examine the role of nature in inspiring great ideas. During millions of years of evolution biological species developed sensing and motor capabilities that went far beyond the abilities and imaginations of our own species. Only after having reached the technological and scientific level to detect electrical fields, ultrasound and infra-sound, infrared and ultraviolet radiation, only after having engineered our own devices for sonar and radar localization and infra-red vision, did we realize that similar systems were long in use by other species? Examples are the operation of ultrasound-based sonar location by whales, bats and sonar detection systems by moths, the still mysterious ultrasound long-distance communication in elephants and whales, the location by alterations in electric fields used by electric fishes, the magnetic fields and lunar cycles by plants, and the infra-red detection of neighbors by snakes, Melanophila beetles (Buprestidae), and plants. Aside from having such exceptional sensors, all biological beings integrate sensing and motor activity to adapt to changing conditions in a smart and autonomous way that characterizes life. Human-made sensors and actuators increasingly try to simulate this smart behavior through use of new, so-called smart materials which are discussed in Chapters 4 and 5 of this book. The present book reviews the sensing, cognitive, and motor activity of selected biological species and compares these with the level of smart materials designed by human engineering where we focus on insects as representative of the animal kingdom and action plants as representatives of active plant systems, although other species of plants and animals are also discussed as far as their behaviors are related to the main theme, “active and sensing mechanisms.”

The motivation for writing this book stems from our own experience of a fruitful cooperation between engineering and biology. As engineers we were often lacking new ideas in our search for new design concepts that could be overcome by reviewing selected biological systems and mechanisms. Biologists, on the other hand, learn to understand their systems better by considering the intricacies of parallel man-made solutions. Finally, it is fun and exciting to learn more about the sophistication of nature that surrounds us and reminds us not to irreversibly destroy systems that still have so much to teach and give to this and future generations. We (Taya and Van Volkenburgh, University of Washington [UW]) started to discuss mechanisms inherent in action plant behavior back in 1998, and thereafter collaborated on a number of projects, papers, and reviews. Since the UW team can cover sensing and active mechanism of plants, but it
lacks the expertise of the sensing and active mechanisms of the animal kingdom, the
UW team asked two entomologists, Nomura (insect wings, and their evolution) and
Mizunami (microbrains of insects). Initially we thought that it would be nearly impos-
sible for us to write such a book together, particularly because of the large gap between
our disciplines of biology (Van Volkenburgh, Nomura, and Mizunami) and engineering
of mechanics and materials (Taya). During the course of writing this book, we realize
that this gap is artificial and needs to be overcome. It is artificial since nature does not
bother about the human convenience of subdividing its actions into biological, chem-
ical, physical, and engineering aspects. What has kept us moving in this direction is a
strong common interest and curiosity centered on biological systems of sensing and
actuation. Van Volkenburgh has been working on mechanisms of sensing and actuation
of selected plants, while Nomura has been working on insect taxonomy, with emphasis
on insect wings, and Mizunami has been studying the microbrains of insects. Taya has
been working on design of synthetic active and sensing materials and their integrated
devices. This book, written by the above four (plant biologist, two entomologists, and
engineer), will cover biological sensing and active mechanisms, and design of human-
made sensors and actuators.

It is noted that a good number of books recently have been published in the area of
biomimetics, reflecting the very high attraction among researchers on related subjects.
This book attempts a more cohesive view that integrates, evaluates, and compares
natural and human-made solutions centered on sensing and active materials and their
integrated systems. The book is composed of seven chapters. After an introduction
(Chapter 1) that describes the appearance and role of bioinspiration in the course of
human development, Chapter 2 gives an overview of particular principles of how
biological species (both plant and animal kingdoms) are organized and constructed,
where we focus mainly on insects to represent the animal kingdom. Chapter 3 gives a
wide variety of examples of biological sensors and movement systems including
photosynthesis of plants and bacteria, while Chapter 4 states a number of synthetic
materials for use as sensing materials and sensors and Chapter 5 covers active materials
and actuators, where color-changing semi-conductor materials are also discussed.
Chapter 6 explores and explains the new bioinspired concepts of sensors and actuators,
where some of them are transferred successfully to useful real applications. Chapter 7
discusses several examples of autonomous systems composed of these bioinspired
sensors and actuators into autonomously adaptable, smart human-made structures,
which simulate the very essence of living systems.

The book is a first attempt to provide fundamental knowledge of sensors and
actuators in both biological and bio-inspired human-made designs for undergraduate
seniors and graduate students, and engineers working in Research & Development
programs that deal with sensors and actuators or with the development of autonomous
systems. The authors’ intention is to write the book in a clear and simple language that
is easily understood by readers from both the biological and engineering sciences.
Accordingly, the book is suited for anybody interested in human and natural creativity,
anybody who wants an engineering view on some of the most interesting systems of the
natural world. For the same reasons we think that the book can be easily adopted for
courses in biomimetics and bioinspired designs at universities and similar institutions. And finally, we hope in particular that it will be enjoyed by anybody who falls outside established categories; the reader we wrote this book for. After all, humans have been using biological species for their immediate necessity, food, and energy. After reading this book, the authors wish that readers are all convinced that Nature is not to be consumed, but kept as she is, so that we will be able to obtain lots of new ideas and concepts from Nature.
M. Taya would like to extend his appreciations to the past and current students and researchers in the research areas covered in this book: Dr. Robert Liang of University of Washington, the late Professor William Armstrong of University of Wyoming, Prof. Tsutomu Mori of Tokyo Institute of Technology, Prof. Taishi Wade of Yokohama National University, and Prof. Hiroyuki Kato of Hokkaido University, Professor Testuo Tagawa of Nagoya University, both Prof. Rysuzo Watanabe and Prof. Youji Sutou of Tohoku University, Prof. Masahiro Kusaka of Hyougo Prefecture University, Prof. Jon Keon Lee of Catholic University of Korea, Prof. Onur C. Namli of Yeditepe University, Turkey for their contributions to the design of a number of shape memory alloys (SMA), ferromagnetic SMA (FSMA) materials, and their actuators. Among these past researchers, Prof. Mori deserves special recognition as he helped in modeling the structure–property relationships of a number of SMA and FSMA systems. Taya’s great appreciation goes to the former graduate students and post doctors: Prof. Martin Dunn of University of Colorado, Prof. Abdul Almajid of King-Saud University, Saudi Arabia, Prof. Jingfeng Li of Tsingha University, China, for their contributions to designs of piezoelectric ceramics based actuators, Prof. Hirohisa Tamagawa of Gifu University, Prof. Soo Yeun Kim of University of Washington, Dr. Jin Wang of Imergy Power, and Dr. Marie Le Guilly of Intel, and Dr. Suzana Popovic for their contributions to design of electroactive polymers and their sensors and actuators. Professor Michihiro Natori of JAXA deserves special recognition for his constant help in providing his valuable photos and data of space-deployable structures and also biological species. Taya is also thankful to those recent graduate students for their help in drawing figures and searching references: Dr. Hee Seok Kim of University of Houston, Mr. Hiromi Yasuda, Mr. Kevin Kadooka, Ms. Cheng Xu, and Ms. Nishita Anandan of University of Washington. Taya is very thankful to Mr. John Verzemnieks of Nabtesco for his efforts in proofreading Chapter 5 and also to Mr. Ken Taya who provided us with the cover design of the book.

Taya finally acknowledges a number of funding agencies and companies who supported his research on related topics; AFOSR, Darpa, ONR, NSF, NEDO, Boeing, Honda, Nabtesco, Ormco, and Micromagnetics. Among these, AFOSR deserves special recognition because Dr. Les Lee has been a very strong supporter of the bioinspired design of actuations and sensing. As I am writing this acknowledgement, I must reflect on the program manager of Darpa in the early 2000s, Dr. E. Garcia, who was the initial strong supporter of active materials, who later on moved to Cornell University, but most
recently passed away last summer (2014), which was quite a loss to the active materials research community.

E. Van Volkenburgh wishes in particular to acknowledge the early insight and collaboration of Dr. Rainer Stahlberg who worked both with her and Taya for many years. With Dr. Stahlberg, Van Volkenburgh initiated activities with the group that formed the Society for Plant Signaling and Behavior (originally named Plant Neurobiology), which has become an international meeting place of plant biologists interested in the topics addressed in this book and many related aspects. We also extend thanks to Annike Eberle (graduate student), Chris Stripinis, and Brittany Guilbert (undergraduates) who carried out research on tendrils.

Mizunami expresses many thanks to the students and collaborators, especially to Dr. Yukihsa Matsumoto (Tokyo Medical and Dental University), Dr. Yoshitaka Hamanaka (Hokkaido University), and Dr. Hiroshi Nishino (Hokkaido University), for their contributions to our work. This work was supported in part by Grants-in Aid for Scientific Research from the Ministry of Education, Science, Culture, Sports and Technology of Japan (KAKENHI).

Nomura would like to express his hearty thanks to Dr. Masatsugu Shimomura (Tohoku University), Dr. Tateo Shimozawa (Hokkaido University), and Dr. Takahiko Hariyama (Hamamatsu University School of Medicine) for their kind encouragement in the course of his study. This work is supported in part by KAKENHI (No. 24120002; principal investigator: Shuhei NOMURA) and by Strategic Basic Research Program (CREST) by Japan Science and Technology Agency (JST).

We are thankful to those who provided us with original figures and photographs that are used in this book, although their names are not listed here. Our great appreciations go to the constant support from Ms. Michelle Carey of Cambridge University Press who has been very patient with our slow process, yet has provided strong support and encouragement of our writing of this book.

Finally, we extend appreciation to our family members; without their sustainable support and understanding, this book would not have been completed.