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Introduction

1.1 Large-Dimensional Data and New Asymptotic Statistics

In a multivariate analysis problem, we are given a sample x1, x2, . . . , xn of random observa-
tions of dimension p. Statistical methods, such as principal component analysis, have been
developed since the beginning of the 20th century. When the observations are Gaussian,
some nonasymptotic methods exist, such as Student’s test, Fisher’s test, or the analysis of
variance. However, in most applications, observations are non-Gaussian, at least in part, so
that nonasymptotic results become hard to obtain and statistical methods are built using
limiting theorems on model statistics.

Most of these asymptotic results are derived under the assumption that the data dimension
p is fixed while the sample size n tends to infinity (large sample theory). This theory had
been adopted by most practitioners until very recently, when they were faced with a new
challenge: the analysis of large dimensional data.

Large-dimensional data appear in various fields for different reasons. In finance, as a
consequence of the generalisation of Internet and electronic commerce supported by the
exponentially increasing power of computing, online data from markets around the world are
accumulated on a giga-octet basis every day. In genetic experiments, such as micro-arrays, it
becomes possible to record the expression of several thousand of genes from a single tissue.
Table 1.1 displays some typical data dimensions and sample sizes. We can see from this table
that the data dimension p is far from the “usual” situations where p is commonly less than
10. We refer to this new type of data as large-dimensional data.

It has been observed for a long time that several well-known methods in multivariate
analysis become inefficient or even misleading when the data dimension p is not as small as,
say, several tens. A seminal example was provided by Dempster in 1958, when he established
the inefficiency of Hotelling’s T 2 in such cases and provided a remedy (named a non-exact
test). However, by that time, no statistician was able to discover the fundamental reasons for
such a breakdown in the well-established methods.

To deal with such large-dimensional data, a new area in asymptotic statistics has been
developed where the data dimension p is no longer fixed but tends to infinity together
with the sample size n. We call this scheme large-dimensional asymptotics. For multivariate
analysis, the problem thus turns out to be which one of the large sample scheme and the
large-dimensional scheme is closer to reality. As Huber (1973) argued, some statisticians
might say that five samples for each parameter on average is enough to use large sample
asymptotic results. Now, suppose there are p = 20 parameters and we have a sample of
size n = 100. We may consider the case as p = 20 being fixed and n tending to infinity

1

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-06517-8 - Large Sample Covariance Matrices and High-Dimensional Data Analysis
Jianfeng Yao, Shurong Zheng and Zhidong Bai
Excerpt
More information

http://www.cambridge.org/9781107065178
http://www.cambridge.org
http://www.cambridge.org


2 Introduction

Table 1.1. Examples of large-dimensional data

Data dimension p Sample size n y = p/n

Portfolio ∼ 50 500 0.1
Climate survey 320 600 0.21
Speech analysis a × 102 b × 102 ∼ 1
ORL face database 1440 320 4.5
Micro-arrays 1000 100 10

(large sample asymptotics), p = 2
√

n, or p = 0.2n (large-dimensional asymptotics). So,
we have at least three different options among which to choose for an asymptotic setup. A
natural question then, is, which setup is the best choice among the three? Huber strongly
suggested studying the situation of increasing dimension together with the sample size in
linear regression analysis.

This situation occurs in many cases. In parameter estimation for a structured covariance
matrix, simulation results show that parameter estimation becomes very poor when the
number of parameters is more than four. Also, it is found that in linear regression analysis,
if the covariates are random (or have measurement errors) and the number of covariates is
larger than six, the behaviour of the estimates departs far from the theoretical values, unless
the sample size is very large. In signal processing, when the number of signals is 2 or 3
and the number of sensors is more than 10, the traditional multivariate signal classification
(music) approach provides very poor estimation of the number of signals, unless the sample
size is larger than 1000. Paradoxically, if we use only half of the data set, namely, we use the
data set collected by only five sensors, the signal number estimation is almost 100 percent
correct if the sample size is larger than 200. Why would this paradox occur? Now, if the
number of sensors (the dimension of data) is p, then one has to estimate p2 parameters
( 1

2 p(p + 1) real parts and 1
2 p(p − 1) imaginary parts of the covariance matrix). Therefore,

when p increases, the number of parameters to be estimated increases proportionally to p2,
while the number (2np) of observations increases proportionally to p. This is the underlying
reason for this paradox. This suggests that one has to revise the traditional MUSIC method
if the sensor number is large.

An interesting problem was discussed by Bai and Saranadasa (1996), who theoretically
proved that when testing the difference of means of two high-dimensional populations, the
Dempster (1958) non-exact test is more powerful than Hotelling’s T 2-test, even when the
T 2-statistic is well defined. It is well known that statistical efficiency will be significantly
reduced when the dimension of data or number of parameters becomes large. Thus, several
techniques for dimension reduction were developed in multivariate statistical analysis. As an
example, let us consider a problem in principal component analysis. If the data dimension
is 10, one may select three principal components so that more than 80 percent of the
information is reserved in the principal components. However, if the data dimension is 1000
and 300 principal components are selected, one would still have to face a large dimensional
problem. If, again, three principal components only are selected, 90 percent or even more of
the information carried in the original data set could be lost. Now, let us consider another
example.
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1.2 Random Matrix Theory 3

Example 1.1 Let x1, x2, . . . , xn be a sample from p-dimensional Gaussian distribution
Np(0, Ip) with mean zero and unit covariance matrix. The corresponding sample covariance
matrix is

Sn = 1

n

n∑
i=1

xi x
∗
i .

An important statistic in multivariate analysis is

Tn = log(det Sn) =
p∑

j=1

log λn, j ,

where {λn, j }1≤ j≤p are the eigenvalues of Sn . When p is fixed, λn, j→1 almost surely as
n→∞, and thus Tn→0. Furthermore, by taking a Taylor expansion of log(1+ x), one can
show that √

n

p
Tn

D−→ N(0, 2)

for any fixed p. This suggests the possibility that Tn remains asymptotically Gaussian for
large p provided that p = O(n). However, this is not the case. Let us see what happens
when p/n→y∈(0, 1) as n→∞. Using results on the limiting spectral distribution of Sn (see
Chapter 2), it is readily seen that almost surely,

1

p
Tn→

∫ b(y)

a(y)

log x

2πyx
[{b(y)− x}{x − a(y)}]1/2 dx = y − 1

y
log(1− y)− 1 ≡ d(y) < 0,

where a(y) = (1−√y)2 and b(y) = (1+√y)2 (details of this calculation of the integral
are given in Example 2.11). This shows that almost surely,√

n

p
Tn � d(y)

√
np →−∞.

Thus, any test which assumes asymptotic normality of Tn will result in a serious error.

These examples show that the classical large sample limits are no longer suitable for dealing
with large-dimensional data analysis. Statisticians must seek out new limiting theorems
to deal with large-dimensional statistical problems. In this context, the theory of random
matrices (RMT) proves to be a powerful tool for achieving this goal.

1.2 Random Matrix Theory

RMT traces back to the development of quantum mechanics in the 1940s and the early
1950s. In this field, the energy levels of a system are described by eigenvalues of a Hermitian
operator A on a Hilbert space, called the Hamiltonian. To avoid working with an infinite-
dimensional operator, it is common to approximate the system by discretisation, amounting
to a truncation, keeping only the part of the Hilbert space that is important to the problem
under consideration. Thus A becomes a finite but large-dimensional random linear operator,
that is, a large-dimensional random matrix. Hence, the limiting behaviour of large-
dimensional random matrices attracts special interest among experts in quantum mechanics,
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4 Introduction

and many limiting laws were discovered during that time. For a more detailed review on
applications of RMT in quantum mechanics and other related areas in physics, the reader is
referred to Mehta’s (2004) Random Matrices.

Since the late 1950s, research on the limiting spectral properties of large-dimensional
random matrices has attracted considerable interest among mathematicians, probabilists,
and statisticians. One pioneering work is the semicircular law for a Gaussian (or Wigner)
matrix (Wigner 1955; 1958). Wigner proved that the expected spectral distribution of a large-
dimensional Wigner matrix tends to the semicircular law. This work was later generalised
by Arnold (1967, 1971) and Grenander (1963) in various aspects. In another direction related
to the class of Gaussian Wishart matrices, or more generally, the class of sample covariance
matrices, breakthrough work was done by Marčenko and Pastur (1967) and Pastur (1972,
1973): the authors discovered the Marčenko-Pastur law under fairly general conditions. The
asymptotic theory of spectral analysis of large-dimensional sample covariance matrices was
later developed by many researchers, including Bai et al. (1986), Grenander and Silverstein
(1977), Jonsson (1982), Wachter (1978), Yin (1986), and Yin and Krishnaiah (1983). Also,
Bai et al. (1986, 1987), Silverstein (1985), Wachter (1980), Yin (1986), and Yin and Krish-
naiah (1983) investigated the limiting spectral distribution of the multivariate Fisher matrix,
or more generally, of products of random matrices (a random Fisher matrix is the product of
a sample covariance matrix by the inverse of another independent sample covariance matrix).
The early 1980s saw major contributions on the existence of limiting spectral distributions
and their explicit forms for certain classes of random matrices. In particular, Bai and Yin
(1988) proved that the spectral distribution of a sample covariance matrix (suitably normal-
ised) tends to the semicircular law when the dimension is relatively smaller than the sample
size. In recent years, research on RMT is turning toward the second-order limiting theorems,
such as the central limit theorem for linear spectral statistics, the limiting distributions of
spectral spacings, and extreme eigenvalues.

1.3 Eigenvalue Statistics of Large Sample Covariance Matrices

This book is about the theory of large sample covariance matrices and their applications
to high-dimensional statistics. Let x1, x2, . . . , xn be a sample of random observations of
dimension p. The population covariance matrix is denoted by � = cov(xi ). The correspond-
ing sample covariance matrix is defined as

Sn = 1

n − 1

n∑
i=1

(xi − x)(xi − x)∗, (1.1)

where x = n−1∑
i xi denotes the sample mean. Almost all statistical methods in multivariate

analysis rely on this sample covariance matrix: principle component analysis, canonical
correlation analysis, multivariate regressions, one-sample or two-sample hypothesis testing,
factor analysis, and so on.

A striking fact in multivariate analysis of large-dimensional statistics is that many import-
ant statistics are functions of the eigenvalues of sample covariance matrices. The statistic Tn

in Example 1.1 is of this type, and following is yet another example.
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1.4 Organisation of the Book 5

Example 1.2 Let the covariance matrix of a population have the form � = �q + σ 2I,
where � is p × p and �q has rank q (q < p). Suppose Sn is the sample covariance matrix
based on a sample of size n drawn from the population. Denote the eigenvalues of Sn by
λ1 ≥ λ2 ≥ · · · ≥ λp. Then the test statistic for the hypothesis H0: rank(�q ) = q against H1:
rank(�q ) > q is given by

Qn = 1

p − q

p∑
j=q+1

λ2
j −
⎛⎝ 1

p − q

p∑
j=q+1

λ j

⎞⎠2

.

In other words, the test statistic Qn is the variance of the p − q smallest eigenvalues of Sn .

Therefore, understanding the asymptotic properties of eigenvalue statistics such as Tn and
Qn has paramount importance in data analysis when the dimension p is getting large with
respect to the sample size. The spectral analysis of large-dimensional sample covariance
matrices from RMT provides powerful tools for the study of such eigenvalue statistics. For
instance, the Marčenko-Pastur law describes the global behaviour of the p eigenvalues of a
sample covariance matrix so that pointwise limits of eigenvalue statistics are determined by
integrals of appropriate functions with respect to the Marčenko-Pastur law (see Example 1.1
for the case of Tn). Moreover, fluctuations of these eigenvalue statistics are described by
central limit theorems found in Bai and Silverstein (2004) and Zheng (2012). Similarly to
the case of classical large sample theory, such CLTs constitute the cornerstones of statistical
inference with large-dimensional data.

1.4 Organisation of the Book

The book has a quite simple structure. The first set of chapters presents in detail the core
of fundamental results from RMT regarding sample covariance matrices and random Fisher
matrices. These results are selected in such a way that they are applied and used in the sub-
sequent chapters of the book. More specifically, Chapter 2 introduces the limiting spectral
distributions of general sample covariance matrices, namely, the Marčenko-Pastur distribu-
tions, and the limiting spectral distributions of random Fisher matrices. Detailed examples
of both limits are also provided. In Chapter 3, the two fundamental CLTs from Bai and
Silverstein (2004) and Zheng (2012) are presented in detail. Simple application examples of
these CLTs are given. We also introduce a substitution principle that deals with the effect in
the CLTs induced by the use of adjusted sample sizes ni − 1 in place of the (raw) sample
sizes ni in the definition of sample covariance matrices and Fisher matrices.

The remaining chapters collect large-dimensional statistical problems where the classical
large sample methods fail and the new asymptotic methods from the RMT provide a valu-
able remedy. The problems run from the “simple” and classical two-sample test problem
(Chapter 5) to the current and advanced topic of the Markowitz portfolio optimisation prob-
lem (Chapter 12). Topics from Chapters 4–9 are classical topics in multivariate analysis; they
are here re-analysed under the large-dimensional scheme. The last three chapters cover three
modern topics in large-dimensional statistics. Methods and results reported in those chapters
have been so far available only in research papers.
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6 Introduction

A characteristic feature of the book is that Chapters 4–12 are quite independent each
other so that they can be read in an arbitrary order once the material in Chapters 2 and 3 is
understood. Notice, however, that dependence between some of these chapters might exist
occasionally, but this remains very limited.

Finally, we have included an appendix to introduce the basics on contour integration. The
reason is that in the CLTs developed in Chapter 3 for linear spectral statistics of sample
covariance matrices and of random Fisher matrices, the mean and covariance functions of
the limiting Gaussian distributions are expressed in terms of contour integrals, and explicit
calculations of such contour integrals frequently appear in various chapters of this book. As
such calculations are not always taught in non-mathematical curricula, it is hoped that the
appendix will help the reader to follow some basic calculations in the use of CLTs.

Notes

On the interplay between random matrix theory and large-dimensional statistics, supplement-
ary information can be found in the excellent introductory papers by Bai (2005), Johnstone
(2007), and Johnstone and Titterington (2009). A more recent review is by Paul and Aue
(2014).
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2

Limiting Spectral Distributions

2.1 Introduction

Let x1, x2, . . . , xn be a sample of random observations of dimension p. The sample covari-
ance matrix is defined as

Sn = 1

n − 1

n∑
i=1

(xi − x)(xi − x)∗ = 1

n − 1

n∑
i=1

xi x
∗
i −

n

n − 1
xx∗, (2.1)

where x = n−1∑
i xi denotes the sample mean. Many of traditional multivariate statistics

are functions of the eigenvalues {λk} of the sample covariance matrix Sn . In the most basic
form, such statistics can be written as

Tn = 1

p

p∑
k=1

ϕ(λk) (2.2)

for some specific function ϕ. Such a statistic is called a linear spectral statistic of the sample
covariance matrix Sn . For example, the so-called generalised variance discussed later in
Chapter 4 (see (4.1)) is

Tn = 1

p
log |Sn| = 1

p

p∑
k=1

log(λk).

So this particular Tn is a linear spectral statistic of the sample covariance matrix Sn with “test
function” ϕ(x) = log(x).

In two-sample multivariate analysis with, say, an x-sample and a y-sample, interesting
statistics will still be of the previous form in (2.2), where, however, the eigenvalues {λk}
will be those of the so-called Fisher matrix Fn . Notice that each of the two examples has a
corresponding sample covariance matrix, say, Sx and Sy. The Fisher matrix associated with
these samples is the quotient of the two sample matrices, namely, Fn = SxS−1

y (assuming the
latter is invertible).

Linear spectral statistics of sample covariance matrices or Fisher matrices are at the heart
of the new statistical tools developed in this book. In this chapter and the next, we introduce
the theoretical backgrounds of these statistics. More specifically, this chapter deals with the
first-order limits of such statistics, namely, to answer the question, when and how Tn should
converge to some limiting value � as both the dimension p and the sample size grow to
infinity?

Clearly the question should relate to the “joint limit” of the p eigenvalues {λk}. The formal
concepts to deal with the question are called the empirical spectral distributions and limiting
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8 Limiting Spectral Distributions

spectral distributions. This chapter, introduces these distributions for the sample covariance
matrix Sn and the two-sample Fisher matrix Fn .

2.2 Fundamental Tools

This section introduces some fundamental concepts and tools used throughout the book.

2.2.1 Empirical and Limiting Spectral Distributions

Let Mp(C) be the set of p × p matrices with complex-valued elements.

Definition 2.1 Let A ∈Mp(C) and {λ j }1≤ j≤p; its empirical spectral distribution (ESD) is

FA = 1

p

p∑
j=1

δλ j ,

where δa denotes the Dirac mass at a point a.

In general, the ESD FA is a probability measure on C; it has support in R (resp. on R+)
if A is Hermitian (resp. nonnegative definite Hermitian). For example, the two-dimensional
rotation

A =
(

0 −1
1 0

)
has eigenvalues ±i so that FA = 1

2 (δ{i} + δ{−i}) is a measure on C, whereas the symmetry

B =
(

0 1
1 0

)
has eigenvalues ±1 so that FB = 1

2 (δ{1} + δ{−1}) has support on R. In this book, we are
mainly concerned with covariance matrices. Because these are Hermitian and nonnegative
definite, the corresponding ESDs will have support on R+.

Definition 2.2 Let {An}n≥1 be a sequence from Mp(C). If the sequence of corresponding
ESDs {FAn }n≥1 vaguely converges to a (possibly defective) measure F , we call F the limiting
spectral distribution (LSD) of the sequence of matrices {An}.

The preceding vague convergence means that for any continuous and compactly supported
function ϕ, FAn (ϕ) → F(ϕ) as n →∞. It is well known that if the LSD F is indeed non-
defective, that is,

∫
F(dx) = 1, the vague convergence turns into the stronger (usual) weak

convergence, that is, FAn (ϕ) → F(ϕ), for any continuous and bounded function ϕ.
When dealing with a sequence of sample covariance matrices {Sn}, their eigenvalues are

random variables and the corresponding ESDs {FSn } are random probability measures on
R+. A fundamental question in random matrix theory is whether the sequence {FSn } has a
limit (in probability or almost surely).
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2.2 Fundamental Tools 9

2.2.2 Stieltjes Transform

The eigenvalues of a matrix are continuous functions of entries of the matrix. But these
functions have no closed forms when the dimension of the matrix is larger than 4. So
special methods are needed for their study. Three important methods are employed in this
area: moment method, Stieltjes transform, and orthogonal polynomial decomposition of the
exact density of eigenvalues. For the sake of our exposition, we concentrate on the Stieltjes
transform method, which is indeed widely used in the literature of large-dimensional statistics.

We denote by �μ the support of a finite measure μ on R. Let

C
+ := {z ∈ C : �(z) > 0}

be the (open) upper half complex plan with positive imaginary part.

Definition 2.3 Let μ be a finite measure on the real line. Its Stieltjes transform (also called
the Cauchy transform in the literature) is defined as

sμ(z) =
∫

1

x − z
μ(dx), z ∈ C \ �μ.

The results of this section are given without proofs; they can be found in textbooks such
as Kreı̆n and Nudel′man (1977).

Proposition 2.4 The Stieltjes transform has the following properties:

1. sμ is holomorphic on C \ �μ
2. z ∈ C+ if and only if sμ(z) ∈ C+
3. If �μ ⊂ R+ and z ∈ C+, then zsμ(z) ∈ C+
4. |sμ(z)| ≤ μ(1)

dist(z, �μ) ∨ |�(z)|
The next result is an inversion result.

Proposition 2.5 The mass μ(1) can be recovered through the formula

μ(1) = lim
v→∞−ivsμ(iv).

Moreover, for all continuous and compactly supported ϕ: R→ R,

μ(ϕ) =
∫
R

ϕ(x)μ(dx) = lim
v↓0

1

π

∫
R

ϕ(x)�sμ(x + iv)dx .

In particular, for two continuity points a < b of μ,

μ([a, b]) = lim
v↓0

1

π

∫ b

a
�sμ(x + iv)dx .

The next proposition characterises functions that are Stieltjes transforms of bounded
measures on R.

Proposition 2.6 Assume that the following conditions hold for a complex valued function
g(z):

1. g is holomorphic on C+
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10 Limiting Spectral Distributions

2. g(z) ∈ C+ for all z ∈ C+
3. lim sup

v→∞
|ivg(iv)| <∞

Then g is the Stieltjes transform of a bounded measure on R.

Similar to the characterisation of the weak convergence of finite measures by the conver-
gence of their Fourier transforms, Stieltjes transform characterises the vague convergence of
finite measures. This a key tool for the study of the ESDs of random matrices.

Theorem 2.7 A sequence {μn} of probability measures on R converges vaguely to some
positive measure μ (possibly defective) if and only if their Stieltjes transforms {sμn } converge
to sμ on C+.

To get the weak convergence of {μn}, one checks the vague convergence of the sequence
using this theorem and then to ensure that the limiting measure μ is a probability measure,
that is, to check μ(1) = 1 through Proposition 2.5 or by some direct observation.

The Stieltjes transform and the RMT are closely related to each other. Indeed, the Stieltjes
transform of the ESD FA of a n × n Hermitian matrix A is by definition

sA(z) =
∫

1

x − z
FA(dx) = 1

n
tr(A− zI)−1, (2.3)

which is the resolvent of the matrix A (up to the factor 1/n). Using a formula for the trace
of an inverse matrix (see Bai and Silverstein, 2010, Theorem A.4), we have

sn(z) = 1

n

n∑
k=1

1

akk − z − α∗k (Ak − zI)−1αk
, (2.4)

where Ak is the (n − 1)× (n − 1) matrix obtained from A with the kth row and column
removed and αk is the kth column vector of A with the kth element removed. If the denom-
inator akk − z − α∗k (Ak − zI)−1αk can be proved to be equal to g(z, sn(z))+ o(1) for some
function g, then a LSD F exists, and its Stieltjes transform is the solution to the equation

s = 1/g(z, s).

Its applications are discussed in more detail later in the chapter.

2.3 Marčenko-Pastur Distributions

The Marčenko-Pastur distribution Fy,σ 2 (M-P law) with index y and scale parameter σ has
the density function

py,σ 2 (x) =
{

1
2πxyσ 2

√
(b − x)(x − a), if a ≤ x ≤ b,

0, otherwise,
(2.5)

with an additional point mass of value 1− 1/y at the origin if y > 1, where a = σ 2(1−√y)2

and b = σ 2(1+√y)2. Here, the constant y is the dimension to sample size ratio index and
σ 2 the scale parameter. The distribution has mean σ 2 and variance yσ 4. The support interval
has a length of b − a = 4σ 2√y.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-06517-8 - Large Sample Covariance Matrices and High-Dimensional Data Analysis
Jianfeng Yao, Shurong Zheng and Zhidong Bai
Excerpt
More information

http://www.cambridge.org/9781107065178
http://www.cambridge.org
http://www.cambridge.org

	http://www: 
	cambridge: 
	org: 


	9781107065178: 


