In this completely revised and expanded second edition of *Counterfactuals and Causal Inference*, the essential features of the counterfactual approach to observational data analysis are presented with examples from the social, demographic, and health sciences. Alternative estimation techniques are first introduced using both the potential outcome model and causal graphs; after which conditioning techniques, such as matching and regression, are presented from a potential outcomes perspective. For research scenarios in which important determinants of causal exposure are unobserved, alternative techniques, such as instrumental variable estimators, longitudinal methods, and estimation via causal mechanisms, are then presented. The importance of causal effect heterogeneity is stressed throughout the book, and the need for deep causal explanation via mechanisms is discussed.

Stephen L. Morgan is the Bloomberg Distinguished Professor of Sociology and Education at Johns Hopkins University. He was previously the Jan Rock Zubrow ’77 Professor in the Social Sciences and the director of the Center for the Study of Inequality at Cornell University. His current areas of interest include social stratification, the sociology of education, and quantitative methodology. He has published *On the Edge of Commitment: Educational Attainment and Race in the United States* (2005) and, as editor, the *Handbook of Causal Analysis for Social Research* (2013).

Christopher Winship is the Diker-Tishman Professor of Sociology and a member of the senior faculty of Harvard’s Kennedy School of Government. Prior to coming to Harvard in 1992, he was Professor of Sociology and Statistics and by courtesy Economics at Northwestern University. His research focuses on statistical models for causal inference, most recently mechanisms and endogenous selection; how black clergy in Boston have worked with police to reduce youth violence; the effects of education on mental ability; pragmatism as the basis for a theory of action; the implications of advances in cognitive psychology for sociology; and sociological approaches to how individuals understand justice. Since 1995 he has been editor of *Sociological Methods and Research*.
Analytical Methods for Social Research

Analytical Methods for Social Research presents texts on empirical and formal methods for the social sciences. Volumes in the series address both the theoretical underpinnings of analytical techniques as well as their application in social research. Some series volumes are broad in scope, cutting across a number of disciplines. Others focus mainly on methodological applications within specific fields such as political science, sociology, demography, and public health. The series serves a mix of students and researchers in the social sciences and statistics.

Series Editors:
R. Michael Alvarez, California Institute of Technology
Nathaniel L. Beck, New York University
Stephen L. Morgan, Johns Hopkins University
Lawrence L. Wu, New York University

Other Titles in the Series:

Time Series Analysis for the Social Sciences, by Janet M. Box-Steffensmeier, John R. Freeman, Matthew Perry Hitt, and Jon C. W. Pevehouse

Event History Modeling: A Guide for Social Scientists, by Janet M. Box-Steffensmeier and Bradford S. Jones

Ecological Inference: New Methodological Strategies, edited by Gary King, Ori Rosen, and Martin A. Tanner

Spatial Models of Parliamentary Voting, by Keith T. Poole

Essential Mathematics for Political and Social Research, by Jeff Gill

Political Game Theory: An Introduction, by Nolan McCarty and Adam Meirowitz

Data Analysis Using Regression and Multilevel/Hierarchical Models, by Andrew Gelman and Jennifer Hill
Counterfactuals and Causal Inference

Methods and Principles for Social Research

Second Edition

STEPHEN L. MORGAN
Johns Hopkins University

CHRISTOPHER WINSHIP
Harvard University
To my wife, Sydney, my son, Vinny, and my daughter, Beatrix
– Steve Morgan

To my wife, Nancy, and my sons, David and Michael
– Chris Winship
Contents

List of Figures xiii
List of Tables xvii
Acknowledgments for First Edition xxi
Acknowledgments for Second Edition xxiii

I Causality and Empirical Research in the Social Sciences
1 Introduction 3
 1.1 The Potential Outcome Model of Causal Inference 4
 1.2 Causal Analysis and Observational Social Science 6
 1.3 Examples Used Throughout the Book 14
 1.4 Observational Data and Random-Sample Surveys 27
 1.5 Causal Graphs as an Introduction to the Remainder of the Book 29

II Counterfactuals, Potential Outcomes, and Causal Graphs
2 Counterfactuals and the Potential Outcome Model 37
 2.1 Defining the Causal States 37
 2.2 Potential Outcomes and Individual-Level Treatment Effects 43
 2.3 Treatment Groups and Observed Outcomes 44
 2.4 The Average Treatment Effect 46
 2.5 The Stable Unit Treatment Value Assumption 48
 2.6 Treatment Assignment and Observational Studies 53
 2.7 Average Causal Effects and Naive Estimation 54
 2.8 Over-Time Potential Outcomes and Causal Effects 62
 2.9 The Potential Outcome Model for Many-Valued Treatments 70
 2.10 Conclusions 73
 2.11 Appendix to Chapter 2: Population and Data Generation Models 74

3 Causal Graphs 77
 3.1 Identification 78
 3.2 Basic Elements of Causal Graphs 79
 3.3 Graphs and Structural Equations 84
 3.4 Causal Graphs and the Potential Outcome Model 90
Contents

3.5 Conclusions 94
3.6 Appendix to Chapter 3: Graphs, Interventions, and Potential Outcomes 95

III Estimating Causal Effects by Conditioning on Observed Variables to Block Back-Door Paths

4 Models of Causal Exposure and Identification Criteria for Conditioning Estimators

4.1 Conditioning and Directed Graphs 105
4.2 The Back-Door Criterion 109
4.3 Models of Causal Exposure and Point Identification Based on the Potential Outcome Model 118
4.4 Conditioning to Balance and Conditioning to Adjust 128
4.5 Conclusions 130
4.6 Appendix to Chapter 4: The Back-Door and Adjustment Criteria, Descendants, and Colliders Under Magnification 130

5 Matching Estimators of Causal Effects

5.1 Origins of and Motivations for Matching 140
5.2 Matching as Conditioning via Stratification 143
5.3 Matching as Weighting 150
5.4 Matching as a Data Analysis Algorithm 158
5.5 Remaining Practical Issues in Matching Analysis 181
5.6 Conclusions 187

6 Regression Estimators of Causal Effects

6.1 Regression as a Descriptive Tool 188
6.2 Regression Adjustment as a Strategy to Estimate Causal Effects 194
6.3 Regression as Conditional-Variance-Weighted Matching 206
6.4 Regression as an Implementation of a Perfect Stratification 214
6.5 Regression as Suplemental Adjustment When Matching 215
6.6 Extensions and Other Perspectives 217
6.7 Conclusions 224

7 Weighted Regression Estimators of Causal Effects

7.1 Weighted Regression Estimators of the ATE 226
7.2 Weighted Regression Estimators of the ATT and the ATC 231
7.3 Doubly Robust Weighted Regression Estimators 234
7.4 Remaining Practical Issues in Weighted Regression Analysis 238
7.5 An Extended Example 243
7.6 Conclusions 262

IV Estimating Causal Effects When Back-Door Conditioning Is Ineffective

8 Self-Selection, Heterogeneity, and Causal Graphs

8.1 Nonignorability and Selection on the Unobservables Revisited 267
8.2 Selection on the Unobservables and the Utility of Additional Posttreatment Measures of the Outcome 269
Contents

8.3 Causal Graphs for Complex Patterns of Self-Selection and Heterogeneity 278
8.4 Conclusions 290

9 Instrumental Variable Estimators of Causal Effects 291
9.1 Causal Effect Estimation with a Binary IV 291
9.2 Traditional IV Estimators 296
9.3 Instrumental Variable Estimators in the Presence of Individual-Level Heterogeneity 305
9.4 Conclusions 324

10 Mechanisms and Causal Explanation 325
10.1 The Dangers of Insufficiently Deep Explanations 326
10.2 The Front-Door Criterion and Identification of Causal Effects by Mechanisms 330
10.3 The Appeal for Generative Mechanisms 338
10.4 The Pursuit of Explanation with Mechanisms That Bottom Out 346
10.5 Conclusions 352

11 Repeated Observations and the Estimation of Causal Effects 354
11.1 Interrupted Time Series Models 355
11.2 Regression Discontinuity Designs 360
11.3 Panel Data 363
11.4 Conclusions 392
11.5 Appendix to Chapter 11: Time-Varying Treatment Regimes 392

V Estimation When Causal Effects Are Not Point-Identified by Observables

12 Distributional Assumptions, Set Identification, and Sensitivity Analysis 419
12.1 Distributional Assumptions and Latent Variable Selection-Bias Models 420
12.2 Set Identification with Minimal Assumptions 422
12.3 Sensitivity Analysis for Provisional Causal Effect Estimates 429
12.4 Conclusions 434

VI Conclusions

13 Counterfactuals and the Future of Empirical Research in Observational Social Science 437
13.1 Objections to Adoption of the Counterfactual Approach 438
13.2 Modes of Causal Inquiry in the Social Sciences 446

References 451
Index 497
Figures

1.1 A causal graph in which back-door paths from D to Y can be blocked by observable variables and in which C is an instrumental variable for D page 30
1.2 A causal graph in which C is no longer an instrumental variable for D 32
1.3 A causal diagram in which M and N represent an isolated and exhaustive mechanism for the causal effect of D on Y 32
2.1 Crude birth rates in Japan, 1951–1980 65
3.1 A directed graph that includes a cycle 80
3.2 Two representations of the joint dependence of A and B on unobserved common causes 81
3.3 Basic patterns of causal relationships for three variables 82
3.4 Two graphs in which the causal effect of D on Y is confounded by C 83
3.5 A causal graph in which the effect of education (E) on earnings (Y) is confounded by observed variables (C) and by unobserved ability (A) 84
3.6 A traditional linear additive path diagram for the effects of parental background (P), charter schools (D), and neighborhoods (N) on test scores (Y) 86
3.7 Equivalent directed graph representations of the effects of parental background (P), charter schools (D), and neighborhoods (N) on test scores (Y) 88
3.8 Two alternative representations of assumed interventions in causal graphs where the effect of D on Y is confounded by C 96
3.9 Alternative graphs for the joint dependence of a two-valued causal variable for education (E) and potential outcomes for earnings (Y^0 and Y^1) observed confounders (C) and on an unobserved confounder for ability (A) 101
4.1 A graph in which the causal effect of D on Y is confounded by the back-door path $D ← C → O → Y$ 106
4.2 Simulation of conditional dependence within values of a collider variable 108
4.3 A causal diagram in which Y_{t-1} is a collider along a back-door path 111
4.4 A causal diagram in which A is a collider on a back-door path 112
4.5 A causal diagram in which Y_{t-2} is a collider on a back-door path and Y_{t-1} is its descendant 114
4.6 A confounded causal effect expressed as an indirect effect and a net direct effect 114
4.7 A graph where the effect of D on Y is not identified by conditioning on O and B because O is a descendant of D 115
4.8 Causal diagrams in which treatment assignment is (a) nonignorable and (b) ignorable 121
4.9 Causal diagrams for the terminology from econometric modeling of treatment selection
4.10 A causal diagram in which sufficient conditioning can be performed with respect to S or X
4.11 A causal graph with a confounded causal effect and where the variables along the back-door path are viewed under magnification
4.12 A diagram where the causal effect of D on Y is not confounded and where the observed variable O on the back-door path is a descendant of both D and Y
4.13 A graph where the effect of D on Y is not identified by conditioning on O and B because O is a descendant of D
4.14 A directed graph that reveals the differences between the back-door criterion and the adjustment criterion
5.1 The propensity score specification for Matching Demonstration 3
5.2 The directed graph implied by the underlying data generation model for Matching Demonstration 4
6.1 Graphs for a regression equation of the causal effect of D on Y
6.2 A causal graph for a regression equation in which the causal effect of D on Y is identified by conditioning on X
7.1 Kernel density estimates of the estimated propensity score, calculated separately for public school students (black solid line) and Catholic school students (gray dashed line)
8.1 Coleman’s strategy for the identification of the causal effect of Catholic schooling on achievement
8.2 Criticism of Coleman’s estimates of the effect of Catholic schooling on learning
8.3 Separate causal graphs for two groups of individuals ($G = 1$ and $G = 2$) where the effects of parental background (P) and charter schools (D) on test scores (Y) may differ for the two groups
8.4 A graph where groups are represented by an unobserved latent class variable (G) in a single graph
8.5 Two graphs where selection into charter schools (D) is determined by group (G) and where selection renders the effect of D on Y unidentified as long as G remains unobserved
8.6 Two graphs where selection on the unobservables is given an explicit representation as self-selection on subjective expectations of variation in the causal effect of D on Y. For panel (b), these expectations are determined by information (I) that is differentially available to families with particular parental backgrounds (P)
8.7 A graph where self-selection on the causal effect of charter schooling also triggers self-selection into consequential and interactive neighborhood contexts (N)
9.1 Two graphs in which Z is a potential instrumental variable
9.2 Two graphs in which Z is a valid IV
9.3 A graph with an unblocked back-door path and a valid IV
9.4 Instrumental variable identification of the causal effect of charter schools (D) on test scores (Y), where Z is the instrument
Figures

9.5 Instrumental variable identification of the causal effect of charter schools \((D)\) on test scores \((Y)\), where separate graphs are drawn for compliers and noncompliers

9.6 A combined graph for Figures 9.5(a)–(b), where \(Z\) is the instrument and compliance is represented as an unobserved latent class variable \((C)\)

9.7 Identification of the LATE using an instrument \((Z)\) for the charter school graph presented earlier in Figure 8.7. The unobserved variable \(V\) is a composite for the causal chain that generates self-selection in Figure 8.7 through information access and selection on the subjective evaluation of the individual-level causal effect

10.1 A directed graph for compliers with quarter of birth as an IV for years of schooling

10.2 A directed graph for compliers with the Vietnam draft lottery as an IV for military service

10.3 A directed graph in which \(M\) and \(N\) represent an exhaustive and isolated identifying mechanism for the causal effect of \(D\) on \(Y\)

10.4 A directed graph in which \(M\) is not an isolated mechanism for the causal effect of \(D\) on \(Y\)

10.5 Directed graphs in which one pathway in an exhaustive and isolated mechanism is unobserved

11.1 Trajectories of the observed outcome as well as the true and assumed counterfactual outcomes for a faulty ITS model

11.3 Foreseeability of a layoff as an example of an RD design

11.4 An example of a fuzzy RD design

11.5 A directed graph for the effect of Catholic schooling on tenth grade achievement when a measure of eighth grade achievement is also available

11.6 Examples of possible trajectories for \(E[Y_{0i} | D_i = 1]\) for the treatment group (the upper line of each pair) and the control group (the lower line of each pair) where the correct adjustment favors \(\alpha\), varies

11.7 Depictions of possible trajectories, as specified by the models in Table 11.3, for \(E[Y_{0i} | D_i = 1]\) (the upper line of each pair, corresponding to the treatment group) and \(E[Y_{0i} | D_i = 0]\) (the lower line of each pair, corresponding to the control group)

11.8 A model of endogenous treatment assignment in which selection is on the pretreatment outcome, \(Y_{t-1}\)

11.9 A model of endogenous treatment assignment in which selection is on a fixed effect that also determines the outcome

11.10 The Catholic school effect in the tenth and twelfth grades as a dynamic treatment regime

11.11 An illustrative directed graph for G-computation

11.12 A directed graph for a pseudo-population produced using inverse probability of treatment weighting

12.1 A graph in which the causal effect of \(D\) on \(Y\) is confounded by an observed variable \(C\) and an unobserved variable \(U\)
Tables

2.1 The Fundamental Problem of Causal Inference page 46
2.2 A Hypothetical Example in Which SUTVA Is Violated 49
2.3 An Example of Inconsistency and Bias of the Naive Estimator When the ATE Is the Causal Effect of Interest 60
2.4 The Fundamental Problem of Causal Inference for Many-Valued Treatments 71
2.5 The Observability Table for Estimating How Education Increases Earnings 72
5.1 The Joint Probability Distribution and Conditional Population Expectations for Matching Demonstration 1 146
5.2 Estimated Conditional Expectations and Probabilities for Matching Demonstration 1 146
5.3 The Joint Probability Distribution and Conditional Population Expectations for Matching Demonstration 2 149
5.4 Estimated Conditional Expectations and Probabilities for Matching Demonstration 2 149
5.5 Monte Carlo Means and Standard Deviations of True and Estimated Treatment Effects for Matching Demonstration 3 155
5.6 Matching Estimates of the ATT, Catholic Schooling on Achievement for One Simulated Dataset 176
5.7 Bias for Matching Estimates of the ATT, Catholic Schooling on Achievement Across 10 Simulated Datasets 178
6.1 The Joint Probability Distribution and Conditional Population Expectations for Regression Demonstration 1 190
6.2 Examples of the Two Basic Forms of Bias for Least Squares Regression 198
6.3 Two-Person Examples in Which Least Squares Regression Estimates Are Unbiased 200
6.4 Two Six-Person Examples in Which Regression Adjustment Is Differentially Effective 203
6.5 A Rearrangement of the Example in Table 6.4 That Shows How Regression Adjustment Is Differentially Effective 204
6.6 The Joint Probability Distribution for Two Variants of the Stratifying and Treatment Variables in Prior Regression Demonstration 1 210
6.7 The Joint Probability Distribution and Conditional Population Expectations for Regression Demonstration 3 213
6.8 Average Bias Comparisons for Selected Matching Estimates of the ATT from Matching Demonstration 4, With and Without Supplemental Regression Adjustment for the Assumed Determinants of Treatment Assignment 216
7.1 Weighted Regression Estimates of the ATE, Using and Extending the Data Setup for Matching Demonstration 3 230
7.2 Weighted Regression Estimates of the ATT and ATC, Using and Extending the Data Setup for Matching Demonstration 3 233
7.3 Bias for Weighted Regression Estimates of the ATT, Catholic Schooling on Achievement Across 10 Simulated Datasets Utilized for Matching Demonstration 4 and Regression Demonstration 4 237
7.4 Means and Standard Deviations of the Primary Variables Used in the Demonstration 245
7.5 Catholic School Coefficients from Baseline Regression Models Predicting Tenth Grade Math Test Scores, Twelfth Grade Math Test Scores, and Math Test Gains 246
7.6 Means and Standard Deviations of Primary Variables, Weighted by the ATT Weight from the Final Estimation of the Treatment Assignment Model 250
7.7 Means and Standard Deviations of Primary Variables, Weighted by the ATC Weight from the Final Estimation of the Treatment Assignment Model 251
7.8 Catholic School Coefficients from ATT-Weighted and ATC-Weighted Regression Models Predicting Tenth Grade Math Test Scores, Twelfth Grade Math Test Scores, and Math Test Gains 253
7.9 Catholic School Coefficients from Weighted Regression Models Restricted to the Region of Overlap in the Estimated Propensity Scores 254
7.10 Catholic School Coefficients from Doubly Robust Weighted Regression Models 255
7.11 Catholic School Coefficients from Weighted Regression Models, Including Additional Covariates 257
8.1 Simulated Results for the Identification Approach Adopted by Coleman and Colleagues 276
9.1 The Distribution of Voucher Winners by School Sector for IV Demonstration 1 295
9.2 The Joint Probability Distribution and Conditional Expectations of the Test Score for Voucher Winner by School Sector for IV Demonstrations 1 and 2 310
9.3 The Distribution of Never Takers, Compliers, and Always Takers for IV Demonstration 2 311
11.1 Change Score and Analysis of Covariance Estimates of the Catholic School Effect in the Tenth Grade 370
11.2 Estimated Average Treatment Effects for Different Combinations of Correct and Assumed Adjustment Factors, Where the True Effect Is Equal to 1 379
11.3 Alternative Trajectories of the Outcome Under the Control State for Different Assumptions About Its Dynamic Structure 381
11.4 Specification Tests from the Analysis of Heckman and Hotz (1989) of the Effect of the National Supported Work Program on the Earnings of High School Dropouts 391
Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.5</td>
<td>Expected Values for the Endogenous Variables in the Directed Graph in Figure 11.10</td>
<td>399</td>
</tr>
<tr>
<td>11.6</td>
<td>Identification Status of the Total Causal Effects in Figure 11.10</td>
<td>400</td>
</tr>
<tr>
<td>11.7</td>
<td>Pseudo-Population Proportions for the Directed Graph in Figure 11.12</td>
<td>414</td>
</tr>
<tr>
<td>12.1</td>
<td>A Hypothetical Example of the Calculation of Bounds for the ATE</td>
<td>423</td>
</tr>
</tbody>
</table>
Without yet knowing it, we began to write this book in 1997 when collaborating on a paper for the 1999 volume of the Annual Review of Sociology, titled “The Estimation of Causal Effects from Observational Data.” We benefited from many helpful comments in the preparation of that manuscript, and we were pleased that many of our colleagues found it to be a useful introduction to a literature that we were, at the time, still working to understand ourselves. Since then, considerable progress in the potential outcomes and counterfactual modeling literature has been achieved, which led us into long discussions of the utility of writing a more comprehensive introduction. In the end, our motivation to learn even more of the literature was the decisive factor.

We thank Richard Berk, Felix Elwert, George Farkas, Glenn Firebaugh, Jeremy Freese, Andrew Gelman, Gary King, Trond Petersen, David Weakliem, and Kim Weeden for reading some or all of the penultimate draft of the book. We also thank the anonymous reviewer recruited by Cambridge University Press. The insightful comments of all of these readers helped tremendously. We also thank our students at Cornell and Harvard, from whom we have learned much in the course of learning and then presenting this material to them. Their comments and questions were more valuable than they are probably aware.

Finally, we thank Kelly Andronicos and Jenny Todd at Cornell University for assistance with the preparation of the manuscript, as well as Larry Wu and Ed Parsons at Cambridge University Press, Project Manager Peter Katsirubas at Aptara, Inc., and Victoria Danahy at In Other Words.
Acknowledgments for Second Edition

We thank all of the students in our classes at Cornell and at Harvard, as well as those who have attended presentations of the new material in this second edition at other universities. Your excellent questions over the years have shaped this book more than you may realize.

For their generosity and willingness to read and comment on substantial portions of this second edition, we thank Weihua An, Neal Beck, Richard Berk, David Bills, Ken Bollen (and his students), Andy Cherlin, Tom DiPrete, Felix Elwert, Markus Gangl, Guanglei Hong, Mike Hout, Tim Liao, Scott Lynch, Isaac Reed, Matt Salganik, Jasjeet Sekhon, Peter Steiner, Jessica Su, Steve Vaisey, Tyler VanderWeele, David Weakliem, and Hui Zheng. In addition, we thank John Cawley and Dan Lichter for pointing us to relevant literature in health economics and demography.

We also thank Cornell University and Harvard University for the sabbatical support that allowed us to begin the writing of this second edition. Morgan thanks Collegio Carlo Alberto for providing a restful and stimulating environment for work from January through June 2013.