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1.1 What this book is about

Quantum mechanics is an extraordinarily successful theory. The quantum mechanical descrip-

tion of the structures and spectra of atoms and molecules is virtually complete, and in prin-

ciple, this provides the basis for understanding all of chemistry. Quantum mechanics gives 

detailed insight into many thermal, electrical, magnetic, optical, and elastic properties of con-

densed materials, including superconductivity, superfluidity, and Bose-Einstein condensation. 

Quantum mechanics underlies the theory of nuclear structure, nuclear reactions, and radioac-

tive decay. Quantum electrodynamics (QED), an outgrowth of quantum mechanics and special 

relativity, is a very successful and detailed description of the interaction of charged leptons 

(i.e., electrons, muons, and tau leptons) with the electromagnetic radiation field. more gener-

ally, relativistic quantum field theory, the extension of quantum mechanics to relativistic fields, 

is the basis for all successful theoretical attempts so far to describe the phenomena of elemen-

tary particle physics.

We assume that you, the reader, have some elementary knowledge of quantum mechanics 

and that you know something about the historical development of the subject and its main 

principles and methods. We take advantage of this background, after a brief  mathematical 

review in Chapter 2, by stating the rules of quantum mechanics in Chapter 3. An advantage 

of this approach is that all the rules are set forth in one place so that we can focus on them. 

in Chapter 3 we also describe application of the rules to several real physical situations, most 

significantly experiments with photon polarizations. Following some development of wave 

mechanics (Chapter 4), we illustrate the rules with additional examples (Chapter 5). We then 

develop the theory further in subsequent chapters, giving as many examples as we can from the 

physical world.

our choice of topics is determined to a large extent by diverse student needs. some students 

plan a career in theoretical physics, but most will work in experimental physics or will use 

quantum mechanics in some other branch of science or technology. many will never take a 

subsequent course in elementary particle physics or quantum field theory. Yet most students 

want to know, and should know, something about the most interesting and important modern 

developments in quantum physics, even if  time or preparation does not permit going into full 

detail about many topics. Thus, in addition to standard material, which can be found in a large 

number of existing textbooks, we include discussions of Bell’s inequality and photon polariza-

tion correlations, neutron interferometry, the Aharonov-Bohm effect, neutrino oscillations, the 

path integral method, second quantization for fermions, the stability of matter, quantization 

of the electromagnetic radiation field, the Casimir-Polder effect, the Lamb shift, the adiabatic 

theorem and geometric phases, relativistic wave equations and especially the Dirac equation, 
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the Dirac fi eld  , elementary QED  , and a lengthy chapter on quantum mechanics of weak inter-

actions, including an introduction to the electroweak standard model  . The choice of topics is 

also infl uenced by my background and experience: i was trained as an experimentalist and have 

spent my entire research career in experimental physics. 

 The rules of quantum mechanics are remarkably successful in accounting for all experi-

mental results to which they have been applied. However, because of the unique way in which 

probabilistic concepts appear, particularly in one rule (the so-called collapse postulate  ), con-

troversy about the foundations of quantum mechanics has existed from the very beginning, 

and it continues today [see, e.g., Laloe ( 2012 )]. indeed, if  we insist that quantum mechanics 

should apply not only to a microscopic system such as an electron or an atom but also to the 

macroscopic apparatus employed to measure that system’s properties and the environment 

that is coupled to the apparatus, the collapse postulate is in confl ict with another essential rule 

that describes how an isolated quantum mechanical system evolves continuously in time. This 

thorny issue is called the  quantum measurement problem     , and it has troubled many thoughtful 

persons, including two of the great founders of quantum theory, Albert Einstein   and Erwin 

schroedinger  , and in more recent times the distinguished physicists John s. Bell   and stephen L. 

Adler  , among many others. A summary of the quantum measurement problem and of several 

attempts to resolve it is given in  Chapter 25 . 

 Before we start, let us remark briefl y on notation and units. Throughout this book, when the 

symbol  e  refers to electric charge it means the  magnitude  of  the electronic charge, a positive 

quantity. The actual charge of the electron is – e . if  we refer to a nonspecifi c electric charge that 

might or might not be  e  or – e , we use the symbol  q . 

 it is not practical for us to work with a single system of units. instead, we try to employ 

units that are most appropriate for the topic at hand. initially, this may seem confusing and 

discouraging to the student, but it is a fact of  life that a practicing physicist must learn to be 

conversant with several different unit systems. For the most part, we use Heaviside-Lorentz 

units   (hlu system  ) for general discussions of  nonrelativistic quantum mechanics. The hlu and 

cgs systems are the same, except that if  a given electric charge has numerical value  q  cgs  in 

the cgs system, it has the value q qq qq qhlq qu cq qu cq qq qu cgsq qq q4q qq qq qu cq qu cπq qq qq qu cq qu c     in the hlu system, and similarly for currents, 

magnetic moments, electric dipole moments, and other electromagnetic sources. on the other 

hand, if  a given electric fi eld has numerical value EcgEcgE s in the cgs system, it has numerical value 

E EhlE EhlE Eu cE Eu cE E gsE EE E / 4/ 4π  in the hlu system, and similarly for magnetic fi elds and scalar and vector 

potentials. We employ atomic units   (defi ned in  section 8.5 ) for atomic and molecular physics 

and natural units   for relativistic quantum mechanics and fi eld theory, with hlu conventions 

for electric and magnetic sources and fi elds. (This natural unit system is defi ned in  section 

15.7  and is used extensively in  Chapters 19 – 24 ). Although syst è me international (si) units   are 

familiar to many students and are convenient for practical engineering and technology, they 

are awkward and inconvenient for quantum mechanics, especially for relativistic quantum 

mechanics, so we avoid them.  

  1.2     A very brief summary of the antecedents of quantum mechanics  

 Although the invention of  quantum mechanics occurred in the remarkably short 

time interval from 1925 through 1928, this burst of  creativity was the culmination of  a 
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1.2 A very brief summary of the antecedents of quantum mechanics3

twenty-fi ve-year gestation period (1900–1925). During that era, the failures of  classical 

physics to account for a wide range of  important physical phenomena were revealed, and 

the need for radical new explanations of  these phenomena became increasingly evident. in 

the following paragraphs we briefl y summarize some of  the most important achievements 

of  the period from 1900 through 1925. [For a detailed history, see Jammer ( 1966 )  ]. Here and 

in the rest of  this book we encourage the reader to pay attention to the interplay between 

experiment and theory that has been so essential for the invention and development of 

quantum mechanics. 

 The question of how to account theoretically for the frequency spectrum of black-body radi-

ation had been discussed in the last decades of the nineteenth century, but it gained urgency 

by 1900 because of accurate measurements of the spectrum by a number of experimentalists, 

notably H. Rubens   and F. Kurlbaum  . in that era, the energy per unit volume per hertz of 

black-body radiation at frequency   ν   in a cavity at absolute temperature  T  was predicted by the 

classical Rayleigh-Jeans formula   to be  

    u
k T

c

Bk Tk T
ν

πν
= −= −( )= −( )= −

8 2

3
( )( )= −( )= −= −( )= −( )Jeans formula( )        (1.1)  

 where  k   B   is Boltzmann’s constant, and  c  is the velocity of light. This formula not only disagreed 

with the observations of Rubens and Kurlbaum, but when integrated over all frequencies, it led 

to the nonsensical conclusion that the total energy of radiation in a cavity of any fi nite volume 

at any fi nite temperature is infi nite. max Planck   ( 1900 ) introduced the quantum of action  h  in 

late 1900 to obtain a new formula  1   for  u    ν   :

    u
h

c h
ν

π ν
=

( )( )c h( )c h k T( )B( )k Tk T( )ν( )ν −

8 1h8 1π ν8 1π νhπ νh8 1π ν
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38 18 1π ν8 1π νπ ν8 1π ν
3c hc hexc hexc hpc hc h

( ’ )( ’Planck( ’s law     (1.2)     

 Planck’s law agrees with experiment, and in the limit where k T hBk Tk T / ν     , it reduces to the 

Rayleigh-Jeans formula. Planck later called his great achievement an act of desperation, and 

for some years after 1900, he struggled without success to fi nd an explanation for the existence 

of  h  within the laws of classical physics. 

 Albert Einstein    recognized the signifi cance of Planck’s law more deeply than Planck himself. 

Einstein was thus motivated to suggest a corpuscular description of electromagnetic radiation 

(Einstein  1905 ). He proposed that the corpuscles (later called  photons     ) have energy  E = h ν  , 

where   ν   is the radiation frequency, and he employed this idea in his theory of the photoelectric 

effect  . Convincing experimental evidence was obtained in support of this theory by a number 

of investigators, most notably Robert millikan  , in the decade following 1905 (millikan  1916 ). 

nevertheless, many physicists found it diffi cult to reconcile the idea of discrete photons with 

the highly successful and universally accepted wave theory of classical electromagnetism. Thus 

Einstein’s corpuscular description gained adherents only very slowly. However, in 1923, Arthur 

H. Compton   made careful observations of x-ray–electron scattering, and he gave a success-

ful kinematic description of this scattering (now called the  Compton effect     ) by considering 

the relativistic collision of a photon with an electron, where both are regarded as particles 

1     The presently accepted value of  h , now called  Planck’s constant     , is  h =  6.62606957(29)  ×  10 –27  erg · s.  
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(Compton  1923 ). Compton showed that a photon not only carries energy  E = h ν   but also linear 

momentum; that is,  

    p
h

c
=

νh
       (1.3)   

 His results fi nally convinced the community of physicists to accept wave-particle duality   for 

electromagnetic radiation. What we mean by this duality is that electromagnetic radiation has 

wavelike properties or particlelike properties depending on what sort of observation is made. 

 The specifi c heats of  solids   presented a problem somewhat related to that of  the black-body 

spectrum. in 1819, these specifi c heats were predicted classically by DuLong and Petit to be 

a constant independent of  temperature. However, by the end of  the nineteenth century, it 

became clear that while measured specifi c heats agree with the DuLong-Petit law   at relatively 

high temperatures, they tend toward zero as  T   →  0. This behavior was explained by Einstein   

( 1911 ) and in more detail by Peter Debye   ( 1912 ) as well as by max Born   and Theodore von 

Karman   (Born and von Karman  1912 ,  1913 ). Their theory, which invoked quantization of 

lattice vibrations of  solids, was a natural outgrowth of  the early quantum theory of  black-

body radiation. 

 Ernest Rutherford   used the results of alpha-particle scattering experiments to propose the 

nuclear atom model   (Rutherford  1911 ). needless to say, an atom in this model consists of a 

massive and very compact nucleus about which atomic electrons circulate in orbital motion. 

According to classical physics, such electrons should radiate electromagnetic waves because 

of their centripetal acceleration, and a simple classical estimate shows that they should lose 

energy and spiral into the nucleus in times of order 10 –15  s. However, atoms are stable, so it is 

obvious that the classical description is very wrong. in 1913, niels Bohr   recognized this, as well 

as the fact that no combination of fundamental constants in classical physics can yield a natu-

ral length scale for an atom, whereas 4  π h  2 / m   e   e  2   ≈  10 –8  cm does provide such a scale. (Here  m   e   is 

the electron mass, and  e  is the magnitude of electron charge in the hlu system.) Employing the 

concepts of quantized stationary (nonradiating) orbits and radiative transitions between them, 

where  h  plays a crucial role, Bohr constructed his model   of atomic hydrogen (Bohr  1913 ). He 

thereby successfully accounted for the frequencies of optical transitions in atomic hydrogen 

and in singly ionized helium. His model quickly gained wide acceptance in part because of con-

vincing supportive evidence from the experiments of James Franck   and gustav Herz   (Franck 

and Herz  1914 ). Here   electrons from a thermionic source were accelerated in an evacuated tube 

containing a low density of atomic vapor (e.g., sodium, potassium, thallium, mercury, etc.). if  

the electron kinetic energy was suffi ciently low, only elastic collisions between electrons and 

atoms occurred. However, if  the electron kinetic energy was high enough to excite a transition 

from the ground state of an atom to an excited state, the electron suffered an inelastic collision 

with corresponding energy loss, and fl uorescence was observed as the excited atom decayed 

back to the ground state. 

 Bohr’s model was elaborated by Arnold sommerfeld   ( 1916 ), who derived a formula for the 

fi ne-structure splittings in hydrogen and singly ionized helium by applying quantization condi-

tions to classical Keplerian orbits of the electron and by including an important relativistic cor-

rection. sommerfeld’s formula agreed (albeit fortuitously) with spectroscopic observations of 

the fi ne structure   and thus the Bohr-sommerfeld model   was taken seriously for about a decade 

as a plausible way to understand atomic structure. 
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1.2 A very brief summary of the antecedents of quantum mechanics5

 The fund of experimental data concerning atomic spectra grew very rapidly in the fi rst 

decades of the twentieth century, thanks to the efforts of many optical and x-ray spectrosco-

pists. Attention naturally was drawn to the problem of assigning Bohr-sommerfeld quantum 

numbers   to hundreds of newly observed energy levels in scores of atoms. of special interest 

were the quantum numbers of atoms in their ground states because this was obviously related 

to the role of atomic structure in building up the periodic table. Here Edmund C. stoner   made 

a valuable contribution in october 1924 by publishing an authoritative classifi cation of such 

quantum numbers (stoner  1924 ). stoner’s conclusions came to the attention of Wolfgang 

Pauli  , who used them to formulate the extremely important exclusion principle   at the end of 

1924 (Pauli  1925 ). 

 observations and analyses of the Zeeman effect   played an especially signifi cant role in the 

elucidation of atomic energy level quantum numbers. Following Peter Zeeman’  s pioneering 

measurements of the splitting of sodium spectral lines in a magnetic fi eld (Zeeman  1897 ), 

Henrik A. Lorentz   gave what appeared to be a correct theoretical explanation based on classi-

cal electrodynamics in the same year (Lorentz  1897 ). This was called the  normal  Zeeman effect  . 

However, as more observations with higher resolution were carried out on many spectral lines 

in various atoms, it became apparent that the normal Zeeman effect is the exception rather than 

the rule. instead, the  anomalous  Zeeman effect   is typical, in which more complicated patterns 

of level splittings occur. For years, the anomalous Zeeman effect remained a mystery because 

all efforts to explain it failed. Finally, the puzzle was resolved with invention of the concept of 

electron spin   by george Uhlenbeck   and samuel goudsmit   in november 1925 (Uhlenbeck and 

goudsmit  1925 ,  1926 ). Earlier in 1925, Ralph Kronig   had conceived of the same idea, but he 

was discouraged by adverse criticism and withdrew his proposal. [For a brief  history of elec-

tron spin, see Commins ( 2012 ).] 

 next we turn to the phenomenon of wave-particle duality   for  material particles  (i.e., elec-

trons, protons, atoms, etc.). First, let us recall relation   ( 1.3 ) between momentum and frequency 

established by Compton for the photon. Employing the familiar expression   λ   =  c /  ν   relating 

wavelength and frequency, we see that ( 1.3 ) implies  

    λ =
h

p
       (1.4)   

 in 1923, Louis de Broglie   ( 1923 ,  1924 ) made the extremely important suggestion that each 

material particle is associated with a wave such that if  the momentum of the particle is  p , 

the wavelength of the corresponding “matter” wave is also given by ( 1.4 ). Fragmentary 

experimental evidence supporting de Broglie’  s hypothesis was already available in 1921 from 

results obtained by C. Davisson   and C. H. Kunsman   on the scattering of electrons from a 

nickel surface (Davisson  1921 ). By 1927, Davisson and L. germer   ( 1927 ) and, independently, 

g. Thomson   and A. Reid (Thomson and Reid 1927; Thomson 1928) provided convincing evi-

dence for relation ( 1.4 ) from electron diffraction experiments  . since then, the validity of ( 1.4 ) 

for material particles has been demonstrated precisely in many different experiments using a 

variety of material particles (e.g., neutrons and neutral atoms) as well as electrons. 

 Even in the absence of any formal quantitative theory, it is natural to assume that a particle 

is most likely to be located where the amplitude of its corresponding de Broglie wave packet 

is large. However, if  the momentum and hence the wavelength are reasonably well defi ned, the 

wave packet must extend over many wavelengths, in which case the position of the particle is 
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quite uncertain. Conversely, if  the position is well defi ned, the wave packet must be confi ned 

to a small region of space, and therefore, it must be a superposition of components with many 

different wavelengths. Hence the momentum is very uncertain. The de Broglie relation ( 1.4 ) 

thus implies that it is impossible to determine simultaneously and precisely the position and the 

conjugate momentum of a particle. 

 This qualitative statement is made more precise by the uncertainty principle  , which was for-

mulated by Werner Heisenberg   ( 1927 ) from consideration of a variety of thought experiments 

in which one tries to measure the position and momentum of a particle but where relation 

( 1.4 ) applies not only to the particle in question but also to a photon that might be used in the 

measurement process. According to the uncertainty principle, the uncertainties  ∆  x  and  ∆  p   x
associated with a simultaneous measurement of coordinate  x  and conjugate momentum  p   x  , 

respectively, satisfy the inequality  

    ∆ ∆x p∆ ∆x p∆ ∆ x ≥

2

       (1.5)  

 where   ћ   =  h /2  π  . Although in classical mechanics the state at any given time of an isolated sys-

tem of  N  particles, each with  f  degrees of freedom, is determined by specifying  Nf  generalized 

coordinates and  Nf  corresponding generalized momenta, the uncertainty principle tells us that 

this specifi cation cannot be done precisely. A coordinate and the corresponding momentum are 

incompatible observables  . 

 intuitively, it is clear that because not only material particles but also photons obey the de 

Broglie relation ( 1.4 ), there should be an uncertainty principle for the electromagnetic fi eld. 

indeed, this is so (Jordan and Pauli  1928 ), although the uncertainty relation for electromag-

netic fi eld components is more complicated than for nonrelativistic material particles. We need 

not be concerned with such complications here. The main point for our present discussion is 

that the classical prescription for specifying a state of the electromagnetic fi eld at any given 

time, by giving each component of the electric and magnetic fi elds at every point in space, can-

not always be achieved. 

 it is easy to see from the de Broglie relation and the uncertainty principle   that the Bohr-

sommerfeld model   has a fatal defect, for in that model one starts in any given situation by 

fi nding the possible classical orbits of an electron or electrons and then selects from those 

orbits the ones that satisfy the Bohr-sommerfeld quantization conditions. However, given the 

incompatibility of coordinate and conjugate momentum, and specifi cally the uncertainty rela-

tion ( 1.5 ), such orbits are in general not observable and indeed have no meaning, especially 

for states such as a ground state, that have small quantum numbers. in fact, looking back 

on the Bohr-sommerfeld model from the viewpoint of quantum mechanics, and using the 

Wentzel-Kramers-Brillouin (WKB) approximation  , one can show that the Bohr-sommerfeld 

quantization conditions are valid only in the limiting case in which the potential energy varies 

very slowly over distances comparable with the linear dimensions of an electron wave packet 

[see, e.g., equation ( 9.18 )]. 

 Although the Bohr-sommerfeld model   was recognized for this and other reasons to be 

defective and was eventually replaced by quantum mechanics, it turned out that the Bohr-

sommerfeld quantum numbers   did not have to be discarded wholesale; rather, some of these 

numbers could be retained if  given new interpretations and new names. Consequently, after 

quantum mechanics was invented, the results of many analyses of atomic and molecular 
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1.2 A very brief summary of the antecedents of quantum mechanics7

spectra carried out before 1925 could be salvaged, including most interpretations of Zeeman-

effect data, stoner’s very useful contribution, and the exclusion principle itself.

We have seen in this section that deep and broad flaws appeared in the classical picture of 

the atomic world in the first quarter of the twentieth century. These flaws were so fundamental 

and serious that it would be necessary to replace the entire classical edifice with a radically dif-

ferent theory – quantum mechanics. it should be no surprise that these radically new concepts 

required a new mathematical language that was quite different from the mathematical language 

of classical physics. it turned out that the natural mathematical language of quantum mechan-

ics is the theory of linear vector spaces and, in particular, Hilbert spaces. Therefore, before we 

discuss the rules of quantum mechanics in Chapter 3, we review and summarize some of the 

most important features of Hilbert spaces in Chapter 2.
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   in this chapter we summarize the most important defi nitions and theorems concerning Hilbert 

spaces   that are relevant for quantum mechanics. much of the material that follows is quite ele-

mentary and is probably well known to most readers. We discuss it mainly to establish a com-

mon language and notation. The reader will notice as we proceed that our standards of rigor 

are low and would be scorned by a proper mathematician. For example, we omit any discussion 

of convergence when considering infi nite-dimensional spaces.  

  2.1     Linear vector spaces  

 A linear vector space    S  consists of certain elements u vu vu vu v, ,, ,, ,u v, ,u vu v, ,     …  called  vectors  together with a 

fi eld of ordinary numbers (sometimes called  c-numbers     )  a ,  b ,  c ,  . …   in quantum mechanics, the 

latter are the complex numbers, and we deal with complex vector spaces  . The vectors u vu vu vu v, ,, ,, ,u v, ,u vu v, ,     …  

and the numbers  a ,  b ,  c ,  …  satisfy the following rules:

   1.      Vector addition is defi ned.  if  u vu vu vu vu v and u v and u v     are members of  S , there exists another vector w    , 

also a member of  S , such that  

    w uw uw uw u v= += += += +w u= +w uw u= +        (2.1)    

  2.      Vector addition is commutative     .  

    u vu vu vu v v uv uv u u vu vu vu v+ = ++ = ++ = ++ = ++ = ++ = +u v+ = +u vu v+ = +v u+ = +v uv u+ = +v u+ = + for all ,u vu v        (2.2)    

  3.      There exists a null vector  0      or simply  0 such that  

    u uu uu uu uu uu u u uu uu uu uu u+ = ++ = ++ = ++ = +u u+ = +u uu u+ = +u u+ = +u u+ = +u uu u+ = + =0 00 00 0u u0 0u uu u0 0u u0 0+ = +0 0+ = ++ = +0 0+ = ++ = +0 0+ = +u u+ = +u u0 0u u+ = +u u+ = +0 0+ = +u u+ = +0 0+ = +u u+ = +0 0+ = + foru uforu u any u uu u        (2.3)    

  4.      Multiplication of a vector  u      by any c-number a is defi ned.   

    u au au a u’u au au au a        (2.4)  

  is in the same “direction” (along the same ray) as u    .  

  5.      The following distributive law     holds.   

    a u v a u au a v( )( )( )( )( )( )( )a u( )a ua u( )v a( )v av a( )v a( )+( )+ = += += +v a= +v a u a= +u au a= +u a= +        (2.5)       

 Mathematical Review       2 
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2.4 unitary spaces: The scalar product9

  2.2     Subspaces  

 A vector space may contain subspaces. A  subspace      is a subclass of  the space, itself  having 

the properties of  a vector space. For example, ordinary Euclidean 3-space contains as sub-

spaces all the straight lines passing through the origin and all the two-dimensional planes 

that pass through the origin. All subspaces possess the null vector in common. They may 

or may not possess other vectors in common. if  they do not, they are said to be  orthogonal 

subspaces .  

  2.3     Linear independence and dimensionality  

 Vectors u uu uu uu u un1 21 21 2u u1 2u uu u1 2u u1 2, ,, ,1 2, ,1 21 2, ,u u1 2, ,u u1 2u u1 2, ,1 2 ...,     are by defi nition linearly independent   if  and only if  the equation  

    a ua u a u a un nn na un na ua un n1 11 1a u1 1a ua u1 1 2 22 2a u2 2a ua u2 2 0+ ++ ++ ++ +a u+ +a u+ +2 2+ +a u2 2a u+ +2 2a u2 2+ +2 2 + =+ =+ =+ =a u+ =a u+ =n n+ =a un na u+ =n na un n+ =n n        (2.6)  

 has no solution except for the trivial solution  

    a a an1 2a a1 2a a 0= =a a= =a a1 2= =a a1 2= =a a1 2 = =a= =        (2.7)   

 suppose that in a certain space  S  there are  n  linearly independent vectors u uu uu uu u un1 21 21 2u u1 2u uu u1 2u u1 2, ,, ,1 2, ,1 21 2, ,u u1 2, ,u u1 2u u1 2, ,1 2 ...,    , 

but any  n  + 1 vectors are linearly dependent. Then, by defi nition, the space is  n -dimensional  . 

The number  n  may be fi nite, denumerably infi nite, or even continuously infi nite. in most of 

the following discussion, we pretend that the space in question has fi nite  n , but the results 

we obtain can be extended in a natural way to the other two cases. Particular problems 

associated with infi nite dimensionality will be dealt with as we come to them (see, e.g., 

 section 2.14 ). 

 in an  n -dimensional space where  n  is fi nite,  n  linearly independent vectors u uu uu uu u un1 21 21 2u u1 2u uu u1 2u u1 2, ,, ,1 2, ,1 21 2, ,u u1 2, ,u u1 2u u1 2, ,1 2 ...,

are said to span the space or form a basis   for the space. This means that any vector w     can be 

expressed as a linear combination of the ui    ; that is,  

    w aw aw a ui ii iui i

i

n

w aw a
=
∑w aw a

1

       (2.8)  

 where the  a   i   are complex numbers.  

  2.4     Unitary spaces: The scalar product  

 A  unitary space      is one in which for any two vectors u vu vu vu v,u vu v     the scalar product   u v|u vu v     is defi ned as 

a complex number with the following properties:

   1.     u v v u| || || || || |u v| |u v v u| |v u| || |    , where the bar means complex conjugate (thus u u|u uu u     is real).  
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mathematical Review10

  2.     u a u v| || || || || |u a| |u av a| |v a| |v a| |u v| |u v .v a| |v a| |  Thus,     
    

au au a u v| || || || || |v v| |v v| |v v| |v v| |v v| | * |* |* |a u* |a ua u* |a u* |= == == =au= =| |= =v v| |= =v v| |v v| |= =| |v v| |= =| |
       

  where the asterisk means complex conjugate.  

  3.     u v v uv uv uv uv u w| || || || || |u v| |u v w u| |w u| |w u| |w u| | || |+ =| || |+ =w u| |+ =w u| |w u| |+ =| |w u| |+ =| | +v uv u    .  

  4.     u u|u uu u > =0 00 00 00 00 00 0u0 0> =0 0> => =0 0> => =0 0> => =0 0> =u> =0 0> =0 0> =0 0> = unless 0 0 unless 0 0> =0 0> = unless > =0 0> =    .    

 We also use the following terminology:

    u u u uu uu u| || || || || || || |u u| |u u u u| |u u| |u u| |u u| || |= =| || | norm of| || |= = norm of| |= = l l lu u lu uu u lu u l| | l| | l| | l| | l| | l| | l| | lu u| | l| |u u| | l| |u u| | l| |u u| | l| |u u| | l| |u u| | l| |u u| | l| |u u| | l| |= = l= =u u= =u u l= =u u= = l= =u u= = l= =| |= = l= =| |= = l= =u u| |= =| | l| |u u= =| |u u| |= =| | l| |u u= =| |u u| |= =| | l| |u u= =| |u u| |= =| | l| |u u= =| |u u| |= =| | l| |u u= =| |u u| |= =| | l| |u u= =| || | norm of| | l norm of| |= = norm of= = l= =| | norm of= = ength ofu uength ofu u         

 Also, if  w uw uw u w u u wu wu wu w≠ ≠w u≠ ≠w u0 00 00 0≠ ≠0 0≠ ≠≠ ≠0 0≠ ≠≠ ≠0 0≠ ≠≠ ≠0 0≠ ≠w u≠ ≠0 0w u≠ ≠w u≠ ≠0 0≠ ≠, ,, ,, ,≠ ≠, ,≠ ≠≠ ≠, ,≠ ≠≠ ≠, ,≠ ≠0 0, ,≠ ≠0 0≠ ≠, ,≠ ≠0 0≠ ≠≠ ≠0 0≠ ≠, ,≠ ≠0 0≠ ≠w u≠ ≠0 0≠ ≠, ,w u≠ ≠w u0 0≠ ≠w u≠ ≠0 0≠ ≠, ,≠ ≠w u0 0≠ ≠ | ,| ,| ,w u| ,w u =| ,= 0| ,| ,| ,w u| ,w u 0| , but    w u  | ,  | ,  w u| ,w u  | ,0| ,  | ,  and u w and u w     are said to be  orthogonal.   

  2.5     Formation of an orthonormal basis: Completeness – 
defi nition of Hilbert spaces    

 given a set of linearly independent vectors u uu uu uu u un1 21 21 2u u1 2u uu u1 2u u1 2, ,, ,1 2, ,1 21 2, ,u u1 2, ,u u1 2u u1 2, ,1 2 ...,     in a unitary space  , we can construct 

an orthonormal basis as follows: form the unit vector  

    φ1

1

1 1

=
u

u u1 1u u1 1|1 11 1u uu u1 1u u1 1u u
       (2.9)   

 next, form  

    φ φφ φφ φφ φφ φφ φφ φφ φ2 2φ φφ φ2 2φ φφ φ2 2φ φ1φ φ= +φ φφ φ= +φ φφ φ= +φ φφ φ= +φ φφ φ2 2φ φ= +φ φ2 2φ φφ φ2 2φ φa uφ φ2 2φ φφ φ2 2φ φa uφ φ2 2φ φφ φ= +φ φa uφ φ= +φ φφ φ= +φ φa uφ φ= +φ φφ φ2 2φ φ= +φ φ2 2φ φa uφ φ2 2φ φ= +φ φ2 2φ φφ φ2 2φ φ= +φ φ2 2φ φa uφ φ2 2φ φ= +φ φ2 2φ φbφ φφ φ        (2.10)  

 with  a ,  b  chosen so that φ φ φ φφ φ1 2φ φ 2 2φ φ2 2φ φ0 10 10 1φ φ0 1φ φ2 20 1φ φ2 2φ φ0 1φ φ2 2φ φ| || || || || || |φ φ| |φ φ φ φ| |φ φ1 2| |φ φ1 2φ φ| |φ φ1 2φ φ φ φ2 2φ φ| |φ φ2 2φ φ0 1| |0 10 1| |φ φ0 1φ φ| |φ φ0 1φ φ0 1| |0 1| |φ φ0 1φ φ| |φ φ0 1φ φφ φ2 2φ φ0 1φ φ2 2φ φ| |φ φ2 2φ φ0 1φ φ2 2φ φ0 1| | .0 1= =0 10 1= =0 1= =φ φ0 1φ φ= =φ φ0 1φ φ2 20 1= =0 1φ φ2 2φ φ0 1φ φ2 2φ φ= =φ φ2 2φ φ0 1φ φ2 2φ φ0 1| |= =| |0 1| |= =| |0 1| |= =| |φ φ0 1φ φ| |φ φ0 1φ φ= =φ φ0 1φ φ| |φ φ0 1φ φφ φ2 2φ φ0 1φ φ2 2φ φ| |φ φ2 2φ φ0 1φ φ2 2φ φ= =φ φ2 2φ φ0 1φ φ2 2φ φ| |φ φ2 2φ φ0 1φ φ2 2φ φ| |= =| |0 1| |= =| || | and | |0 1| | and 0 1| || | and | |0 1| | and 0 1| |0 1| |= =| | and 0 1| |0 1= =| |     That is,  

    φ φ φφ φ1 2φ φ 1 2 0| || || || || || |φ φ| |φ φ φ| |φ1 2| |φ φ1 2φ φ| |φ φ1 2φ φ 1 2| |1 2= += += +1 2= +| |= +| || |= +φ| |φ= +φ| |φ =1 2a u1 2| |a u| || |a u| |a uφ| |φa uφ| |φ1 2| |1 2a u| |= +a u= +1 2= +a u1 2= +| |= +a u| |= +| |= +a u= +| |= +a u= +φ| |φ= +φ| |φa uφ| |= +φ| |φ1 2| |1 2= +| |a u| |1 2= +| | b        (2.11)  

 which yields b a ub a= −b a φ1 2u1 21 2|1 21 2     and thus  

    φ φφ φφ φφ φφ φφ φφ φφ φ φφ φ2 2φ φφ φ2 2φ φφ φ2 2φ φφ φ2 2φ φ1 11 11 1φ1 1φ 2φ φ= −φ φφ φ= −φ φφ φ= −φ φφ φ= −φ φφ φ2 2φ φ= −φ φ2 2φ φφ φφ φφ φφ φφ φ2 2φ φφ φ2 2φ φφ φφ φφ φφ φφ φ2 2φ φφ φ2 2φ φφ φ2 2φ φφ φ2 2φ φ φ φa uφ φφ φa uφ φφ φ2 2φ φa uφ φ2 2φ φφ φ2 2φ φa uφ φ2 2φ φφ φ= −φ φa uφ φ= −φ φφ φ= −φ φa uφ φ= −φ φφ φ2 2φ φ= −φ φ2 2φ φa uφ φ2 2φ φ= −φ φ2 2φ φφ φ2 2φ φ= −φ φ2 2φ φa uφ φ2 2φ φ= −φ φ2 2φ φφ φa uφ φφ φ2 2φ φa uφ φ2 2φ φφ φ= −φ φa uφ φ= −φ φφ φ2 2φ φ= −φ φ2 2φ φa uφ φ2 2φ φ= −φ φ2 2φ φφ φφ φφ φφ φa uφ φφ φφ φφ φφ φ2 2φ φφ φ2 2φ φφ φ2 2φ φφ φ2 2φ φa uφ φ2 2φ φφ φ2 2φ φφ φ2 2φ φφ φ2 2φ φφ φ= −φ φφ φ= −φ φφ φ= −φ φφ φ= −φ φa uφ φ= −φ φφ φ= −φ φφ φ= −φ φφ φ= −φ φφ φ2 2φ φ= −φ φ2 2φ φφ φ2 2φ φ= −φ φ2 2φ φφ φ2 2φ φ= −φ φ2 2φ φφ φ2 2φ φ= −φ φ2 2φ φa uφ φ2 2φ φ= −φ φ2 2φ φφ φ2 2φ φ= −φ φ2 2φ φφ φ2 2φ φ= −φ φ2 2φ φφ φ2 2φ φ= −φ φ2 2φ φ u|        (2.12)  

 with  a  chosen so that φ φ2 2φ φ2 2φ φ 1|φ φφ φφ φ2 2φ φφ φ2 2φ φ =    . next, defi ne φ3     by  

    φ φφ φφ φφ φφ φφ φφ φ φ φφ φφ φ φφ φ3 3φ φφ φ3 3φ φφ φ3 3φ φ1 11 11 1φ φ1 1φ φ3 2φ φ3 2φ φφ φ3 2φ φφ φ3 2φ φ 2 3φ φ= −φ φφ φ= −φ φφ φ= −φ φφ φ3 3φ φ= −φ φ3 3φ φφ φ= −φ φφ φ3 3φ φ= −φ φ3 3φ φφ φφ φφ φφ φφ φφ φφ φφ φφ φ3 3φ φφ φ3 3φ φφ φ3 3φ φφ φ3 3φ φφ φ3 3φ φφ φ3 3φ φ φ φa uφ φφ φa uφ φφ φ3 3φ φa uφ φ3 3φ φφ φ3 3φ φa uφ φ3 3φ φφ φ= −φ φa uφ φ= −φ φφ φ= −φ φa uφ φ= −φ φφ φ3 3φ φ= −φ φ3 3φ φa uφ φ3 3φ φ= −φ φ3 3φ φφ φ3 3φ φ= −φ φ3 3φ φa uφ φ3 3φ φ= −φ φ3 3φ φφ φa uφ φφ φ3 3φ φa uφ φ3 3φ φφ φ= −φ φa uφ φ= −φ φφ φ3 3φ φ= −φ φ3 3φ φa uφ φ3 3φ φ= −φ φ3 3φ φφ φφ φφ φφ φa uφ φφ φφ φφ φφ φ3 3φ φφ φ3 3φ φφ φ3 3φ φφ φ3 3φ φa uφ φ3 3φ φφ φ3 3φ φφ φ3 3φ φφ φ3 3φ φφ φ= −φ φφ φ= −φ φφ φ= −φ φφ φ= −φ φa uφ φ= −φ φφ φ= −φ φφ φ= −φ φφ φ= −φ φφ φ3 3φ φ= −φ φ3 3φ φφ φ3 3φ φ= −φ φ3 3φ φφ φ3 3φ φ= −φ φ3 3φ φφ φ3 3φ φ= −φ φ3 3φ φa uφ φ3 3φ φ= −φ φ3 3φ φφ φ3 3φ φ= −φ φ3 3φ φφ φ3 3φ φ= −φ φ3 3φ φφ φ3 3φ φ= −φ φ3 3φ φ u u2 3u u2 3φ φφ φφ φa uφ φφ φa uφ φφ φ= −φ φa uφ φ= −φ φφ φ= −φ φa uφ φ= −φ φ | || || || || || || |φ φ| |φ φφ φ| |φ φφ φ| |φ φ φ| |φ3 2| |φ φ3 2φ φ| |φ φ3 2φ φφ φ3 2φ φ| |φ φ3 2φ φφ φ3 2φ φ| |φ φ3 2φ φ 2 3| |2 3u u| |u uu u| |u u| |u u| |u u| |φ φu uφ φ| |φ φu uφ φφ φu uφ φ| |φ φu uφ φφ φu uφ φ| |φ φu uφ φφ φu uφ φ| |φ φu uφ φ φu uφ| |φu uφ3 2u u| |u uφ φ3 2φ φu uφ φ3 2φ φ| |φ φ3 2φ φu uφ φ3 2φ φφ φ3 2φ φu uφ φ3 2φ φ| |φ φ3 2φ φu uφ φ3 2φ φφ φ3 2φ φu uφ φ3 2φ φ| |φ φ3 2φ φu uφ φ3 2φ φ 2 3u u| |2 3u uφ φφ φu uφ φφ φ| |φ φφ φu uφ φφ φ     (2.13)  

 with  a  ′  chosen to normalize φ3    , and so on. The result of this  Schmidt process      is a basis of 

orthogonal unit vectors (orthonormal vectors) φ φφ φφ φφ φφ φφ φφ φφ φφ φ...,φ φ .n     

 A set of basis vectors in a unitary space   is said to be  complete  if  any vector in the space 

can be expressed as a linear combination of the basis members. For fi nite-dimensional vec-

tor spaces, any set that spans the space is complete. if  the space has infi nite dimensionality, 
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