Atomic and Molecular Spectroscopy

Basic Concepts and Applications

Rita Kakkar
To my father

Late Shri Om Prakash Chadha
Contents

List of Figures \hspace{1cm} x
List of Tables \hspace{1cm} xv
Preface \hspace{1cm} xvii
Acknowledgements \hspace{1cm} xix
List of Abbreviations \hspace{1cm} xx

1 Fundamentals of Spectroscopy \hspace{1cm} 1

1.1 Introduction \hspace{1cm} 1

1.2 Some Properties of Waves
 1.2.1 Travelling waves \hspace{1cm} 5

1.3 Electromagnetic Radiation
 1.3.1 Wave nature of light \hspace{1cm} 6
 1.3.2 Particulate nature of radiation \hspace{1cm} 8

1.4 Electromagnetic Spectrum \hspace{1cm} 12

1.5 Blackbody Radiation \hspace{1cm} 13

1.6 Boltzmann’s Population Distribution \hspace{1cm} 15

1.7 Einstein’s Coefficients
 1.7.1 Lasers \hspace{1cm} 18

1.8 Line Broadening
 1.8.1 Natural line broadening \hspace{1cm} 24
 1.8.2 Pressure or collisional broadening \hspace{1cm} 32
 1.8.3 Doppler broadening \hspace{1cm} 32

1.9 Lambert–Beer’s Law
 1.9.1 Power or saturation broadening \hspace{1cm} 41

1.10 Fourier Transform Spectroscopy \hspace{1cm} 42

1.11 Summary \hspace{1cm} 46

1.12 Exercises \hspace{1cm} 47

2 Theoretical Principles \hspace{1cm} 51

2.1 Introduction \hspace{1cm} 51

2.2 The Postulates of Quantum Mechanics Explained \hspace{1cm} 52
Contents

2.3 Time-Dependent Perturbation 57
 2.3.1 The interaction of electromagnetic radiation with a molecular system 60

2.4 Einstein’s Coefficient of Induced Absorption 65
 2.4.1 Comparison with experimental quantities 68

2.5 Einstein’s Coefficients of Induced and Spontaneous Emission 70

2.6 The Basis of Selection Rules 72

2.7 Overview of Selection Rules 74

2.8 Summary 77

2.9 Exercises 77

3 Atomic Spectroscopy 79

3.1 Introduction 79

3.2 The Bohr Theory of the Hydrogen Atom 79

3.3 Hydrogen and Hydrogen-like Ion Spectra 83
 3.3.1 Transition probabilities 86

3.4 Multi-Electron Atoms 89
 3.4.1 Alkali metal spectra 90
 3.4.2 Two-electron systems 92
 3.4.3 Ground state terms 102
 3.4.4 Quantitative treatment of the coupling of orbital and spin angular momenta for multi-electron atoms 103
 3.4.5 Intermediate coupling 109
 3.4.6 Interaction with external fields 109

3.5 Photoelectron Spectroscopy 115

3.6 Summary 117

3.7 Exercises 118

4 Pure Rotational Spectroscopy 124

4.1 Overview of Molecular Spectra 124

4.2 The Rigid Diatomic Molecule (The Rigid Rotor) 127
 4.2.1 Interaction of radiation with a rotating molecule 134
 4.2.2 Rotational spectra and bond lengths of diatomic molecules 137
 4.2.3 The effect of isotopic substitution 139
 4.2.4 Rotational energy level populations: Intensities of spectral lines 141
 4.2.5 Centrifugal distortion 147

4.3 Rotation of Polyatomic Molecules: Classification of Molecules 149
 4.3.1 Linear molecules 152
 4.3.2 Spherical tops 156
 4.3.3 Symmetric tops 156
 4.3.4 Asymmetric top molecules 165

4.4 The Effect of Electric Fields: The Stark Effect 169
 4.4.1 Effect on the energy levels of a symmetric top 169
 4.4.2 Stark effect for linear molecules 172
4.5 Applications of Microwave Spectroscopy 172
4.6 Summary 173
4.7 Exercises 174

5 Vibrational Spectroscopy of Diatomics 182
5.1 Introduction 182
5.2 Oscillations of Systems with One Degree of Freedom 182
5.3 The Diatomic Molecule 185
5.3.1 Lagrange’s equations of motion 187
5.3.2 Normal coordinates and linear transformations 188
5.3.3 Simultaneous diagonalization 189
5.3.4 Heteronuclear diatomic molecules 191
5.3.5 Mass-weighted coordinates 192
5.4 Quantum Mechanical Treatment 196
5.4.1 Mechanism of infrared radiation absorption: qualitative ideas 201
5.4.2 Quantitative treatment of selection rules 202
5.5 The Potential Energy Function for a Chemical Bond 208
5.5.1 Experimental accuracy of the Morse potential 214
5.5.2 Force constants 214
5.5.3 Isotopic substitution 216
5.5.4 Vibrational dependences of rotational constants 221
5.5.5 Combination differences 223
5.6 Summary 224
5.7 Exercises 225

6 Vibrational Spectroscopy of Polyatomic Molecules 231
6.1 Introduction 231
6.2 Normal Modes of Vibration of Carbon Dioxide 231
6.2.1 Properties of normal modes 237
6.2.2 Selection rules for carbon dioxide 238
6.2.3 Vibration–rotation spectra of symmetric top molecules 241
6.2.4 Symmetries of normal modes 242
6.2.5 Selection rules 250
6.2.6 Higher vibrational wave functions 256
6.2.7 Combination bands 257
6.3 Summary 260
6.4 Exercises 260

7 The Raman Effect 263
7.1 Introduction 263
7.2 Classical Treatment of the Raman Effect 264
7.2.1 Polarizability 264
Contents

7.2.2 Molecular rotations 265
7.2.3 Molecular vibrations 266
7.3 Quantum Theory 267
 7.3.1 Polarizability ellipsoid 267
 7.3.2 Selection rules 270
7.4 Rule of Mutual Exclusion 277
7.5 Polarization of Raman Lines 279
7.6 Fermi Resonance 282
7.7 Influence of Nuclear Spin 284
7.8 Structure Determination Using Combined Infrared and Raman Data 289
 7.8.1 Examples of spectral assignments 290
7.9 Group Frequencies 297
7.10 Comparison of IR and Raman spectroscopies 299
7.11 Advanced Raman Techniques 299
7.12 Summary 300
7.13 Exercises 300

8 Electronic Spectroscopy of Diatomic Molecules 305
 8.1 Introduction 305
 8.2 The Born–Oppenheimer Approximation 305
 8.3 Vibrational Coarse Structure 307
 8.4 Franck–Condon Principle 308
 8.5 Dissociation Energy 311
 8.5.1 The Franck–Condon factor: Quantum mechanical treatment 314
 8.6 Electronic Structure of Diatomic Molecules 316
 8.6.1 Homonuclear diatomic molecules 322
 8.6.2 Heteronuclear diatomic molecules 324
 8.7 Electronic Angular Momentum in Diatomic Molecules 328
 8.7.1 Completely filled shells 328
 8.7.2 Single unpaired electron 328
 8.7.3 Two unpaired electrons 329
 8.8 Selection Rules 331
 8.9 Rotational Fine Structure of Electronic–Vibrational Transitions 334
 8.9.1 The Fortrat diagram 336
 8.10 Photoelectron Spectroscopy (PES) 337
 8.11 Summary 342
 8.12 Exercises 342

9 Electronic Spectroscopy of Polyatomic Molecules 346
 9.1 Introduction 346
 9.2 Intensities of Electronic Transitions 346
 9.2.1 Calculation of oscillator strength 347
9.3 Types of Electronic Transitions
 9.3.1 Effect of conjugation 352
 9.3.2 Effect of solvent 354
9.4 Theories of $\pi \rightarrow \pi^*$ Transitions
 9.4.1 Hückel molecular orbital (HMO) theory 356
9.5 Free Electron Model of Linear Polyenes
 9.5.1 Calculation of the wave functions 366
 9.5.2 Energy of the longest wavelength transition in polyenes 366
 9.5.3 Selection rules for particle-in-a-box wave functions 370
9.6 Change of Molecular Shape on Absorption
 9.6.1 AH_2 molecules 372
 9.6.2 The electronic structure of formaldehyde 377
9.7 Vibronic Coupling 380
9.8 Re-emission of Energy by an Excited Molecule 381
9.9 Kinetics of Photochemistry 385
9.10 Summary 389
9.11 Exercises 389

 Appendix 1 397
 Appendix 2 399
 Bibliography 403
 Index 405
List of Figures

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Caption</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Oscillation of a ball in circular motion</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>The wavelength of a sine wave, λ, measured between crests</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>A cosine wave expressed as a sine wave with $\phi = \pi/2$</td>
<td>4</td>
</tr>
<tr>
<td>1.4</td>
<td>“Snapshots” of a sinusoidal wave at two different times t_1 and $t_2 > t_0$, showing motion of the peak originally at the origin at t_0</td>
<td>5</td>
</tr>
<tr>
<td>1.5</td>
<td>A schematic view of an electromagnetic wave propagating along the z-axis</td>
<td>6</td>
</tr>
<tr>
<td>1.6</td>
<td>Electric field \vec{E} orientation for polarized and non-polarized electromagnetic waves</td>
<td>7</td>
</tr>
<tr>
<td>1.7</td>
<td>The electromagnetic spectrum</td>
<td>12</td>
</tr>
<tr>
<td>1.8</td>
<td>Cross-section of a blackbody cavity at a temperature T with a radiation density ρ_{ν} emitting radiation with intensity I_{ν} from a small hole</td>
<td>14</td>
</tr>
<tr>
<td>1.9</td>
<td>The distribution function $\rho(\nu)$ at 1000 K</td>
<td>14</td>
</tr>
<tr>
<td>1.10</td>
<td>Schematic representations of stimulated absorption (top), spontaneous emission (middle) and stimulated emission (bottom) processes in a two-level system</td>
<td>19</td>
</tr>
<tr>
<td>1.11</td>
<td>Laser action</td>
<td>22</td>
</tr>
<tr>
<td>1.12</td>
<td>A three-level laser system</td>
<td>23</td>
</tr>
<tr>
<td>1.13</td>
<td>The ruby laser</td>
<td>24</td>
</tr>
<tr>
<td>1.14</td>
<td>Decay of excited state population $N_m(t)$ leads to similar exponential decay of radiation amplitude, giving a Lorentzian spectrum</td>
<td>26</td>
</tr>
<tr>
<td>1.15</td>
<td>The exponential decay function (1.19) and the Lorentzian function, equation (1.23), plotted against $(\omega - \omega_0)$ for various values of γ</td>
<td>30</td>
</tr>
<tr>
<td>1.16</td>
<td>Normalized Gaussian and Lorentzian line-shape functions</td>
<td>38</td>
</tr>
<tr>
<td>1.17</td>
<td>The absorption of radiation by a solution</td>
<td>38</td>
</tr>
<tr>
<td>1.18</td>
<td>An absorption spectrum</td>
<td>41</td>
</tr>
<tr>
<td>1.19</td>
<td>(a) The time domain function $e^{-\alpha t} \cos \omega_0 t$ plotted against time for $\alpha = 0.10$ and $\omega_0 = 1$; (b) The corresponding frequency domain function $\frac{1}{\sqrt{2\pi}} \left(\frac{\alpha}{\alpha^2 + (\omega - \omega_0)^2} \right)$ plotted against $(\omega - \omega_0)$</td>
<td>45</td>
</tr>
</tbody>
</table>
List of Figures

1.20 (a) The function $f(t)$ given by equation (1.43) plotted versus t; (b) The Fourier transform of $f(t)$, equation (1.44), plotted against $(\omega - \omega_0)$ 46

2.1 Plot of the function $\frac{\sin^2(\omega t/2)}{(\omega/2)^2}$ versus ω 63

2.2 Graph of (a) x^2; (b) x^3 74

2.3 Symmetries of atomic orbitals 75

2.4 Allowed decays for the first four Bohr levels in hydrogen atom 76

3.1 The hydrogen spectral series 81

3.2 Spherical polar coordinates in terms of Cartesian coordinates, $x = r \sin \theta \cos \phi$, $y = r \sin \theta \sin \phi$, $z = r \cos \theta$ 83

3.3 Radial distribution curves for the 3s, 3p and 3d orbitals of hydrogen 90

3.4 Grotrian diagram for sodium 91

3.5 The 3p \rightarrow 3s transition of sodium (D lines) 92

3.6 Singlet and triplet helium. The 1^1S-state has the energy -24.77 eV, while the 2^3S-state has energy -5.00 eV. The transitions shown here apply to one electron and the other remains in the 1s state 95

3.7 (a) Two equivalent p electrons; (b) 1^3D; (c) remaining terms; (d) 1^3P; (e) 1^1S 99

3.8 Schematic energy level structure of the (2p)2 configuration in LS coupling 105

3.9 (a) Normal Zeeman effect for a d \rightarrow p transition of Cd (b) Anomalous Zeeman effect for the D lines of Na 111

3.10 Principle of conventional PES. Ionization of molecules with monochromatic radiation of fixed frequency leads to the photoejection of electrons (photoelectric effect). 115

3.11 Photoelectron spectrum of Ar excited by Kα X-radiation [adapted from Siegbahn et al. (1969)] 116

4.1 Translational, rotational and vibrational motion of a diatomic molecule 125

4.2 Relative spacings of translational, rotational and vibrational energy levels 126

4.3 Rotational motion 128

4.4 Diatomic molecule reduced to a one-body problem with mass μ_{mol} 130

4.5 The allowed energies of a diatomic molecule 132

4.6 Interaction of a diatomic molecule with electromagnetic radiation 134

4.7 Allowed transitions between the energy levels of a rigid diatomic molecule and the rotational spectrum 136

4.8 Part of the rotational (far infrared) spectrum of CO showing transitions with $J'' = 3$ to 9 141

4.9 Variation of the population with rotational quantum number for CO at 300 K 142

4.10 Schematic spectrum of CO at 300 K 144

4.11 Far-infrared pure rotational spectrum of the silane spherical top 157

4.12 Principal axes for (a) an oblate symmetric top and (b) a prolate symmetric top 157

4.13 The structure and principal axes of boron trifluoride (BF$_3$) with $r_{BF} = 0.13$ nm 158
List of Figures

4.14 \(\bar{L}, L, (K) \) definitions for a prolate top (CH\(_3\)I) 160
4.15 Rotational energy levels (cm\(^{-1}\)) for (a) a prolate (CH\(_3\)I) and (b) an oblate (NH\(_3\)) symmetric top 162
4.16 Principal inertial axes and expressions for moments of inertia of the different categories of molecules 167
4.17 Precession of the dipole 169
4.18 The Stark effect 171
5.1 Displacement of the spring as a function of time 184
5.2 Variation of potential and kinetic energies with time 184
5.3 Plot of harmonic oscillator (a) wave functions and (b) probability densities and energy levels for CO \((\tilde{v} = 2168 \text{ cm}^{-1}; \text{bond extension in m, energies in cm}^{-1}) \) 199
5.4 Variation of dipole moment with internuclear distance in a heteronuclear diatomic molecule 207
5.5 Energy levels of a harmonic oscillator (grey line), compared with those for an anharmonic potential (black line) for HCl 209
5.6 Effect of \(k \) on the energy levels of CO \((k = 1870 \text{ N m}^{-1}) \) and F\(_2\) \((k = 450 \text{ N m}^{-1}) \) 211
5.7 Vibration-rotation transitions of a diatomic molecule 218
5.8 Mean internuclear distance \(\langle r \rangle \) for the harmonic and anharmonic potential, showing the first few vibrational energy levels 223
5.9 Fundamental band of HCl 223
5.10 The method of combination differences (a) common \(J'' \) and (b) common \(J' \) 224
6.1 Normal modes of vibration of carbon dioxide 236
6.2 Dipole moment change in the normal modes of vibration of carbon dioxide 239
6.3 PQR band contour 240
6.4 Q branch of perpendicular band of symmetric top molecule 241
6.5 Normal modes of some linear molecules 243
6.6 Modes of vibration of ammonia 256
6.7 Vibrational energy levels for water 257
6.8 Combination bands of water 258
6.9 Background infrared spectrum of air 259
7.1 Transitions involved in Stokes, Rayleigh and anti-Stokes lines in Raman spectroscopy 264
7.2 Polarizability changes during rotation of a diatomic molecule 265
7.3 Polarizability changes during vibration of a diatomic molecule 266
7.4 Three views of the water molecule and its polarizability ellipsoid 270
7.5 Rotational Raman spectrum of a linear molecule 271
7.6 Raman rotational lines of a symmetric top molecule 273
7.7 Changes in the polarizability ellipsoid of the carbon dioxide molecule during its vibrations 275
7.8 Changes in the polarizability ellipsoid during the normal vibrations of the water molecule 276
7.9 Polarization of Raman lines 279
7.10 Mixing of vibrational energy levels 283
7.11 Rotational Raman spectrum of carbon dioxide 285
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.12</td>
<td>Rotational Raman spectrum of hydrogen</td>
<td>287</td>
</tr>
<tr>
<td>7.13</td>
<td>Vibration-rotation spectrum of acetylene</td>
<td>288</td>
</tr>
<tr>
<td>7.14</td>
<td>Computed Raman and IR spectrum of chloroform (B3LYP/6-311+G(d,p) calculation using Gaussian 09W)</td>
<td>292</td>
</tr>
<tr>
<td>7.15</td>
<td>Infrared (top) and Raman spectra of CCl₄</td>
<td>294</td>
</tr>
<tr>
<td>7.16</td>
<td>Raman spectrum of CCl₄ with the intensity measured parallel and perpendicular to the incident radiation</td>
<td>295</td>
</tr>
<tr>
<td>7.17</td>
<td>Raman spectrum of a C₆₀ single crystal (1064 nm) and a polycrystalline C₆₀ film (488.0 nm) recorded at 90 K for two different lasers.</td>
<td>296</td>
</tr>
<tr>
<td>7.18</td>
<td>Absorbance FTIR spectrum of film of C₆₀ on KBr substrate</td>
<td>296</td>
</tr>
<tr>
<td>8.1</td>
<td>Electronic transitions</td>
<td>306</td>
</tr>
<tr>
<td>8.2</td>
<td>Vibrational progressions and sequences</td>
<td>307</td>
</tr>
<tr>
<td>8.3</td>
<td>The ((\nu',0)) progression</td>
<td>308</td>
</tr>
<tr>
<td>8.4</td>
<td>Probability distribution for a diatomic molecule</td>
<td>309</td>
</tr>
<tr>
<td>8.5</td>
<td>Franck–Condon transitions</td>
<td>310</td>
</tr>
<tr>
<td>8.6</td>
<td>Birge–Sponer extrapolation (a) negligible second order anharmonicity constants; (b) second-order anharmonicity constants not negligible</td>
<td>312</td>
</tr>
<tr>
<td>8.7</td>
<td>Dissociation upon excitation to stable upper state and continuous upper state</td>
<td>312</td>
</tr>
<tr>
<td>8.8</td>
<td>Energy levels in predissoication</td>
<td>315</td>
</tr>
<tr>
<td>8.9</td>
<td>Predissoication</td>
<td>315</td>
</tr>
<tr>
<td>8.10</td>
<td>Formation of 1s(\sigma) and 1s(\sigma^*) orbitals from two atomic 1s orbitals</td>
<td>317</td>
</tr>
<tr>
<td>8.11</td>
<td>Variation of energy with internuclear distance</td>
<td>318</td>
</tr>
<tr>
<td>8.12</td>
<td>Formation of 2p(\sigma) and 2p(\sigma^*) orbitals from two atomic 2p orbitals</td>
<td>318</td>
</tr>
<tr>
<td>8.13</td>
<td>Formation of 2p(\pi) and 2p(\pi^*) orbitals from two atomic 2p orbitals</td>
<td>319</td>
</tr>
<tr>
<td>8.14</td>
<td>Molecular orbital diagram for O(_2) and F(_2) (left) and H(_2) (right)</td>
<td>320</td>
</tr>
<tr>
<td>8.15</td>
<td>Radial distribution curves for 2s and 2p orbitals</td>
<td>320</td>
</tr>
<tr>
<td>8.16</td>
<td>Molecular orbital energy level diagrams for the diatomic molecules of the second row elements</td>
<td>321</td>
</tr>
<tr>
<td>8.17</td>
<td>Molecular orbital energy-level diagrams for (a) alkali metal and (b) alkaline earth metal diatomic (M(_2)) molecules</td>
<td>323</td>
</tr>
<tr>
<td>8.18</td>
<td>Molecular orbital energy-level diagram for carbon monoxide</td>
<td>326</td>
</tr>
<tr>
<td>8.19</td>
<td>Molecular orbital energy-level diagram for HCl</td>
<td>327</td>
</tr>
<tr>
<td>8.20</td>
<td>Singlet and triplet states of the hydrogen molecule</td>
<td>331</td>
</tr>
<tr>
<td>8.21</td>
<td>Potential energy curves of the ground state and the lowest excited states of molecular hydrogen</td>
<td>332</td>
</tr>
<tr>
<td>8.22</td>
<td>Potential energy curves for molecular oxygen</td>
<td>333</td>
</tr>
<tr>
<td>8.23</td>
<td>Electronic transitions in CO</td>
<td>334</td>
</tr>
<tr>
<td>8.24</td>
<td>Rotational fine structure of a vibration-electronic transition</td>
<td>336</td>
</tr>
<tr>
<td>8.25</td>
<td>The Fortrat diagram</td>
<td>337</td>
</tr>
<tr>
<td>8.26</td>
<td>Photoelectron spectroscopy</td>
<td>338</td>
</tr>
<tr>
<td>8.27</td>
<td>Photoelectron spectrum of H(_2)</td>
<td>339</td>
</tr>
<tr>
<td>8.28</td>
<td>Photoelectron spectrum of N(_2) showing the vibrational spacings in various N(_2^+) states</td>
<td>340</td>
</tr>
<tr>
<td>8.29</td>
<td>Photoelectron spectrum of carbon monoxide</td>
<td>341</td>
</tr>
<tr>
<td>8.30</td>
<td>Photoelectron spectrum of HCl</td>
<td>342</td>
</tr>
<tr>
<td>9.1</td>
<td>Molecular electronic energy levels</td>
<td>350</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2</td>
<td>Regions of the electronic spectrum and the electronic transitions observed</td>
<td>350</td>
</tr>
<tr>
<td>9.3</td>
<td>Terms used in reference to electronic spectra</td>
<td>351</td>
</tr>
<tr>
<td>9.4</td>
<td>UV/Vis spectra of the polyenes CH<sub>3</sub>(CH=CH)<sub>n</sub>CH<sub>3</sub>, where <i>n</i> = 3, 4 and 5</td>
<td>352</td>
</tr>
<tr>
<td>9.5</td>
<td>MO level correlation diagram to illustrate the effect of conjugation on the</td>
<td>353</td>
</tr>
<tr>
<td></td>
<td><i>π→π</i> transition of unsaturated hydrocarbons</td>
<td></td>
</tr>
<tr>
<td>9.6</td>
<td>Effect of conjugation on <i>n→π</i> transitions</td>
<td>354</td>
</tr>
<tr>
<td>9.7</td>
<td>Effect of polar solvents on <i>n→π</i> and <i>π→π</i> transitions</td>
<td>354</td>
</tr>
<tr>
<td>9.8</td>
<td>HMO energy scheme for ethylene</td>
<td>358</td>
</tr>
<tr>
<td>9.9</td>
<td>HMO energy scheme for butadiene</td>
<td>361</td>
</tr>
<tr>
<td>9.10</td>
<td>Wave function for the lowest <i>π</i> orbital of butadiene; it has no nodes</td>
<td>366</td>
</tr>
<tr>
<td>9.11</td>
<td>Assumed and actual potential</td>
<td>368</td>
</tr>
<tr>
<td>9.12</td>
<td>Some conjugated polyenes</td>
<td>369</td>
</tr>
<tr>
<td>9.13</td>
<td>Walsh diagram for dihydrides of second row atoms</td>
<td>373</td>
</tr>
<tr>
<td>9.14</td>
<td>The photoelectron spectrum of water</td>
<td>376</td>
</tr>
<tr>
<td>9.15</td>
<td>Possible transitions for formaldehyde</td>
<td>379</td>
</tr>
<tr>
<td>9.16</td>
<td><i>π→π</i>* and <i>n→π</i>* transitions of formaldehyde</td>
<td>380</td>
</tr>
<tr>
<td>9.17</td>
<td>Jablonski diagram, showing electronic and vibrational energy levels</td>
<td>381</td>
</tr>
<tr>
<td>9.18</td>
<td>Fluorescence</td>
<td>382</td>
</tr>
<tr>
<td>9.19</td>
<td>Intersystem crossing from S<sub>1</sub> to T<sub>1</sub></td>
<td>384</td>
</tr>
<tr>
<td>9.20</td>
<td>Fluorescence and phosphorescence emission intensity as a function of time</td>
<td>384</td>
</tr>
<tr>
<td>9.21</td>
<td>Stern-Volmer plot of quenching of fluorescence of riboflavin in 0.02 M acetic acid by halide ions</td>
<td>388</td>
</tr>
</tbody>
</table>
List of Tables

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Caption</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Characteristics of electromagnetic radiation</td>
<td>9</td>
</tr>
<tr>
<td>1.2</td>
<td>Conversion factors between radiation frequency, wavenumber, photon energy and the corresponding energy per mole</td>
<td>9</td>
</tr>
<tr>
<td>1.3</td>
<td>Types of spectroscopy, showing the typical energies involved and the different types of quantized energy levels probed</td>
<td>13</td>
</tr>
<tr>
<td>3.1</td>
<td>The allowed values for ((m, m_j, m', m'_j))</td>
<td>98</td>
</tr>
<tr>
<td>3.2</td>
<td>Partial terms arising from the occupancy of a single spin set ((\alpha) or (\beta))</td>
<td>101</td>
</tr>
<tr>
<td>3.3</td>
<td>Terms for ((3d)^n) free ion configurations</td>
<td>102</td>
</tr>
<tr>
<td>4.1</td>
<td>Rotational spectrum of HCl</td>
<td>147</td>
</tr>
<tr>
<td>4.2</td>
<td>Some lines in the rotational spectrum of methyl fluoride</td>
<td>165</td>
</tr>
<tr>
<td>5.1</td>
<td>Comparison of the harmonic and anharmonic oscillators</td>
<td>214</td>
</tr>
<tr>
<td>5.2</td>
<td>Force constants and dissociation energies of some bonds</td>
<td>215</td>
</tr>
<tr>
<td>5.3</td>
<td>Relationship between vibrational frequency and strength of carbon-carbon bonds for hydrocarbons</td>
<td>216</td>
</tr>
<tr>
<td>5.4</td>
<td>Effect of atomic masses on the vibrational frequencies of C-X bonds</td>
<td>216</td>
</tr>
<tr>
<td>6.1</td>
<td>Normalized coefficients ((A_i)) for the three normal modes of carbon dioxide</td>
<td>235</td>
</tr>
<tr>
<td>6.2</td>
<td>Normal modes of water</td>
<td>248</td>
</tr>
<tr>
<td>6.3</td>
<td>Character table for point group (D_{2h})</td>
<td>253</td>
</tr>
<tr>
<td>6.4</td>
<td>The infrared spectrum of ammonia</td>
<td>255</td>
</tr>
<tr>
<td>7.1</td>
<td>Infrared and Raman spectra of water and carbon dioxide</td>
<td>277</td>
</tr>
<tr>
<td>7.2</td>
<td>Some nuclei, their spin quantum numbers and statistics</td>
<td>284</td>
</tr>
<tr>
<td>7.3</td>
<td>Nuclear spin statistics of (^7)H(_2)</td>
<td>288</td>
</tr>
<tr>
<td>7.4</td>
<td>Vibrational spectra of chloroform</td>
<td>293</td>
</tr>
<tr>
<td>7.5</td>
<td>The observed wavenumbers in the vibrational spectrum of CCl(_4)</td>
<td>294</td>
</tr>
<tr>
<td>7.6</td>
<td>Some group frequencies for functional groups in organic chemistry</td>
<td>297</td>
</tr>
<tr>
<td>9.1</td>
<td>Some examples of absorption due to (n\rightarrow\sigma^*) transitions</td>
<td>352</td>
</tr>
<tr>
<td>9.2</td>
<td>Determination of symmetries of the ethylene wave functions</td>
<td>362</td>
</tr>
</tbody>
</table>
Preface

This book is primarily intended for post-graduate students of science, but is simple enough for an undergraduate student to understand. Every chapter begins with simple concepts related to the topic of the chapter, and gradually Quantum Mechanical and Group Theoretical treatments are introduced for a deeper understanding. I have tried to keep the language simple and have introduced new concepts one at a time, so that the reader is not overwhelmed by too many new ideas at the same time.

Spectroscopy is so vast and new concepts are rapidly emerging, so that it is not possible for a book to be complete. This book does not pretend to be complete—but it does try to cover the underlying principles thoroughly so that the reader should not face difficulty in applying these principles to his own problem.

Spectroscopy cannot be understood without a thorough knowledge and understanding of quantum mechanics. Though a number of Quantum Mechanics principles are scattered throughout the book, the reader is advised to first take at least an elementary course on quantum mechanics. The reader must also familiarize himself/herself with Group Theory—at least to the extent of assignment of molecular point groups, calculation of direct products, projection operator techniques, etc. There are a number of excellent texts, namely Cotton, Schonland, Ladd, to name a few. Again, a brief description of these techniques is given as and when required. Though I was advised by a reviewer of the book to include a chapter on Group Theory, it would have added to the volume and cost of the book, because there is nothing I could have removed from the other chapters in order to keep the page number around 400.

One other point—all chapters are arranged in sequence, so that a concept introduced in a certain chapter is used in one of the next chapters—so you cannot expect to understand, say the third chapter, without first reading the first two chapters. I have spent a lot of thought on the arrangement of the chapters—in the short time of one semester, it is extremely important that everything is taught without any repetition. In this respect, though in most books atomic spectroscopy is taught along with electronic spectroscopy, in this book it is the first topic to be covered. The reason is the simplicity of atomic spectroscopy, which has no complications from rotation and vibration, as in the case of molecular electronic spectroscopy. The entire sequence may be different from other books, but in my experience this is the only way I am able to cover the entire syllabus (which also includes NMR and Mössbauer spectroscopy and X-ray diffraction) in 50 hours. After a lot of jugglery during the initial years of teaching the paper, this is the sequence that I found to serve my purpose.
Preface

A motivation for writing the book was that, although several excellent books exist on the subject (Banwell, Hollas, Barrow, Chang, to name a few), no single book covers all the topics I wished to include. Many of the texts are also outdated. The level of this book is all the way from Banwell to Hollas and more. The symbols and units used in the book are in conformity with those recommended by IUPAC.

Though every possible effort has been made to avoid errors, in a project of this size, it is inevitable that some errors may have crept in. I shall be thankful to readers if they point them out so that future editions will be error free. Any suggestion or constructive criticism will be highly appreciated.

Rita Kakkar, FRSC
Acknowledgements

This is the best part of the book where I can pen my thoughts without worrying about scientific accuracy. I owe this book to all those who directly or indirectly encouraged me. My first source of motivation was the thousands of students who thronged my spectroscopy class. There can be no better encouragement than the rapt attention of these young souls, their inquisitive questions, coming to me with their doubts after class, their excitement at scoring well in the paper, coming after the NET (National eligibility test) and telling me that they were successful in “cracking” it because of their understanding of spectroscopy and quantum mechanics. For all these students, many of whom have told me that they use my class-notes even for undergraduate teaching, I have brought out this book. As all teachers would agree, there is no satisfaction greater than the high one gets after a well-appreciated class.

To my research group of nearly 40 students, past and present, I owe a lot of thanks for constantly encouraging me to write the book. They are now urging me to write another book on quantum mechanics! To the present lot of students, who had to wait for me to get free from the book before I could check their research papers, thank you for your patience!

I am indebted to all my teachers who made learning fun. I was fortunate to be taught by some of the best teachers, both during my undergraduate and postgraduate studies. For spectroscopy, especially, I was fortunate to be taught by the likes of the late Professors N. K. Ray and V. M. Khanna. Professor N. K. Ray had the knack to make complex quantum mechanics seem so simple, while Professor V. M. Khanna’s mastery of spectroscopy was phenomenal. His problem sets were unique and I have included some of his questions in the book. I was also fortunate to have taught three core courses—quantum mechanics, statistical thermodynamics and spectroscopy—in parallel with him and am indebted to him for his guidance. I would also specially mention Professor J. Nagchaudhuri. I do not know where she is at present, but when she left for Kolkata after retirement, she promised to write a book on spectroscopy and remain in touch. That was before the time of the internet and e-mail, and we somehow lost touch. While Professor V. M. Khanna was adept at the theoretical aspects of spectroscopy, she also brought in the experimental aspects. Teaching alongside her, I learnt to include some experimental topics in my teaching. The result is a nice amalgamation of theoretical and experimental spectroscopy, and I sincerely hope that it will be appreciated.

To my publisher’s representative, Mr. Gauravjeet Reen of Cambridge University Press, thank you for extending the deadline and your understanding. This soft-spoken gentleman would call me telephonically and ask politely whether this was a good time to talk, and then throw a bombshell by advancing the date of submission of the manuscript. This kept me on my
xx Acknowledgements

toes. Finally, when the deadline approached, he told me to take my own time, saving me from more sleepless nights.

The acknowledgements would not be complete if I did not appreciate the anonymous reviewers of the book, both national and international. Their comments have definitely helped. I particularly thank one reviewer for suggesting an easy to remember expression for the moment of inertia of linear polyatomic molecules, which I have included in the text. That brings me to my son, Chetan. He was studying in Class IX when I was writing the Rotational Spectroscopy chapter and he just happened to pass by my computer. He asked me why I was deriving the expression for OCS in such a complicated way, when the parallel axis theorem (which he was studying in Physics then) could be used, and I included his derivation in the book.

I dedicate the book to my parents—my late father who always had faith in me and my mother for her excellent advice at all times, her commitment to education—she was a graduate in Economics at a time when women hardly studied. At the age of 90+, she still remembered the poetry we learnt at school and have forgotten. She would advise her children and grand children (from Longfellow’s A Psalm of Life) “Be not like dumb, driven cattle! Be a hero in the strife”. Unfortunately, she passed away during production of the book. Without my parents’ constant support, I would not have been what I am today. I cannot thank my Dad enough for his support. On looking at my notes, I came across his hand-writing. In my graduation days, our Department library had just one copy of Banwell (the cheap Indian edition had not been published then) and it was issued to students just for a day. Photostat was not so common then, and he actually copied some of the pages for me. I also owe my love for mathematics to him—though I am not as quick as him at doing arithmetic in my head.

Last, but not the least, I would like to express my heartfelt gratitude to my immediate family for putting up with me and my erratic hours during writing of the book. A special word of thanks to my husband, Dr. Subhash Kakkar, for his constant support through thick and thin. To my son Chetan, thank you for making life worth living. Besides the emotional support that the two have provided, both of them have also helped in the preparation of the manuscript—my husband by encouraging me to draw the figures myself, starting by drawing a few of those himself, and my son by providing technical help and advice throughout, the computer wizard that he is.

Rita Kakkar, FRSC
List of Abbreviations

NMR Nuclear Magnetic Resonance
ESR Electron Spin Resonance
UV Ultraviolet
IR Infrared
MW Microwave
FWHM Full Width at Half Maximum
Vis Visible
FT Fourier Transform
FFT Fast Fourier Transform
QM Quantum Mechanics
PES Photoelectron Spectroscopy
ESCA Electron Spectroscopy for Chemical Analysis
XPS X-ray Photoelectron Spectroscopy
IE Ionization Energy
COM Centre of Mass
MO Molecular Orbital
HOMO Highest Occupied Molecular Orbital
LUMO Lowest Unoccupied Molecular Orbital
HMO Hückel Molecular Orbital
FEM Free Electron Model
ISC Intersystem Crossing
VR Vibrational Relaxation
IC Internal Conversion
AO Atomic Orbital
rms Root Mean Square
LCAO Linear Combination of Atomic Orbitals