Contents

List of Figures: xii
List of Tables: xxi
Preface: xxiii
Acknowledgments: xxiv
Nomenclature: xxv

1. Introduction
1.1 Defining Tribology
1.1.1 What is tribology?
1.1.2 Need of tribology as a separate subject
1.1.3 History of Tribology
1.2 Tribology in Design
1.2.1 Mechanical design of seal and gasket
1.2.2 Tribological design of seals and gasket
1.3 Tribology in Industry (Maintenance)
1.3.1 Example: seal
1.3.2 Example: cam
1.3.3 Example: journal bearings
1.3.4 Example: magnetic bearing
1.3.5 Example: multi-row roller bearing
1.3.6 Example: gear
1.4 Defining Lubrication
1.4.1 Examples
1.4.2 Applications of lubricant
1.4.3 What is expected from a lubricant?
1.5 Basic Modes of Lubrication
1.5.1 Thick and thin lubrications
1.5.2 Lubrication mechanisms
1.6 Properties of Lubricants
1.7 Types of Lubricants
1.7.1 Solid lubricants
1.7.2 Semi-solid lubricant
1.7.3 Liquid lubricants
1.7.4 Gaseous lubricants
1.8 Lubricant Additives 34
 1.8.1 Need of Additives 34
 1.8.2 Types of additives 35
 1.8.3 Interference between additives 38
1.9 Lubrication Selection 38
1.10 Defining Bearing Terminology 39
 1.10.1 Comparison between sliding and rolling contact bearings 40
 1.10.2 Rolling contact bearings 40
 1.10.3 Sliding contact bearings 41
Frequently Asked Questions 43
Multiple Choice Questions 47
Answers 50
References 51

2. Friction, Wear and Boundary Lubrication 52
 2.1 Friction 52
 2.1.1 Classification of friction 53
 2.1.2 Laws of friction 54
 2.1.3 Causes of dry friction 56
 2.2 Theories of Dry Friction 57
 2.3 Friction Measurement 65
 2.4 Stick–Slip Motion and Friction Instabilities 68
 2.5 Wear 72
 2.5.1 Classification of wear 74
 2.5.2 Factors affecting wear 98
 2.6 Theories of Wear 99
 2.7 Approaches to Friction Control and Wear Prevention 102
 2.8 Boundary Lubrication 103
Frequently Asked Questions 110
Multiple Choice Questions 115
Answers 118
References 118

3. Lubrication of Bearings 120
 3.1 Mechanics of Fluid Flow 121
 3.1.1 Theory of hydrodynamic lubrication 122
 3.1.2 Lubricant Viscosity 124
 3.1.3 Mechanism of pressure development in lubricant film 132
 3.2 Reynolds’ Equation and its Limitations 134
 3.3 Idealized Bearings 138
 3.3.1 Infinitely long plane fixed sliders 138
 3.3.2 Infinitely long plane pivoted sliders 143
 3.3.3 Infinitely long journal bearings 144
 3.3.4 Infinitely short journal bearings 151
 3.4 Journal Bearings 153
 3.4.1 Locating journal position 156
 3.4.2 Lubricant supply in bearing 156
 3.4.3 Design of journal bearings 158
<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequently Asked Questions</td>
</tr>
<tr>
<td>Multiple Choice Questions</td>
</tr>
<tr>
<td>Answers</td>
</tr>
<tr>
<td>References</td>
</tr>
<tr>
<td>Program Listing in MATLAB for Problem 3</td>
</tr>
</tbody>
</table>

4. **Hydrodynamic Thrust Bearing**

4.1 Introduction | 187 |
4.2 Pressure Distribution | 188 |
4.2.1 Fixed pad thrust bearing | 198 |
4.2.2 Tilting pad thrust bearing | 200 |
4.3 Load | 201 |
4.4 Centre of Pressure | 201 |
4.5 Friction | 202 |
Frequently Asked Questions | 203 |
Multiple Choice Questions | 207 |
Answers | 208 |
References | 208 |

5. **Hydrostatic and Squeeze Film Lubrication**

5.1 Hydrostatic Lubrication | 209 |
5.1.1 Basic concept | 209 |
5.1.2 Advantages and limitations | 210 |
5.1.3 Viscous flow through rectangular slot | 210 |
5.1.4 Types and configurations | 213 |
5.1.5 Circular step thrust bearing | 215 |
5.1.6 Rectangular thrust bearing | 219 |
5.1.7 Hydrostatic journal bearing | 222 |
5.1.8 Energy losses | 226 |
5.2 Squeeze Film Lubrication | 227 |
5.2.1 Basic concept | 228 |
5.2.2 Squeeze action between circular flat plates | 229 |
5.2.3 Squeeze action between rectangular plates | 231 |
5.2.4 Squeeze action under variable and alternating loads | 232 |
5.2.5 Application to journal bearings | 234 |
5.3 Engine Bearing Lubrication | 237 |
5.3.1 Oil flow | 240 |
5.3.2 Power loss | 241 |
5.3.3 Temperature rise | 241 |
5.3.4 Design procedure | 241 |
5.3.5 Case studies | 243 |
Frequently Asked Questions | 248 |
Multiple Choice Questions | 256 |
Answers | 259 |
References | 259 |

6. **Elasto-Hydrodynamic Lubrication**

6.1 Principles and Applications | 261 |
6.2 Hertz Theory | 263 |
Table of Contents

6.3 Pressure–Viscosity Term in Reynolds’ Equation 269
6.4 Ertel–Grubin Equation 274
6.5 Numerical Method for Determining Oil Film Thickness in Elasto–Hydrodynamic Lubrication 278
6.6 Rolling Element Bearings 281
6.7 EHL of Gear–Teeth Contact 284
Frequently Asked Questions 288
References 290
Program Listing in MATLAB for Figure 6.3.2–6.3.4 290
Program Listing in MATLAB for Figure 6.5.2–6.5.3 293

7. Gas (Air) Lubricated Bearings 297
7.1 Introduction 297
7.2 Merits, Demerits and Applications 300
7.3 Aerodynamic Bearings 301
7.3.1 Pad bearings 301
7.3.2 Cylindrical bearings 306
7.3.3 Magnetic recording discs with flying head 307
7.4 Aerostatic Bearings 309
7.4.1 Flow through restrictors 311
7.4.2 Radial aerostatic bearings 313
7.4.3 Thrust aerostatic bearings 316
Frequently Asked Questions 319
Multiple Choice Questions 321
Answers 323
References 323
Program Listing in MATLAB for Figure 7.3.7 324

8. Mixed Lubrication 326
8.1 Introduction 326
8.2 Surface Topography 330
8.3 Characterization of Surface 337
8.4 Boundary Lubrication 338
8.5 Effect of Surface Topography on Mixed Lubrication 350
8.6 Asperity Temperatures in Mixed Film Lubrication 350
8.7 Tribological Performance of Bearing Operating in Mixed Lubrication Regime 351
Frequently Asked Questions 357
Multiple Choice Questions 358
Answers 360
References 360
Program Listing in MATLAB for Figure 8.39 361

9. Tribological Aspects of Rolling Motion 371
9.1 Rolling Element Bearings 371
9.1.1 Bearing terminology 371
9.1.2 Classification of rolling bearings 374
9.1.3 Load capacity 376
9.1.4 Standardization 382
9.1.5 Tribology of rolling bearings 383
9.1.6 Case study: failure analysis of four row cylindrical roller bearing 386
9.2 The Mechanics of Tyre–Road Interactions 392
Frequently Asked Questions 394
Multiple Choice Questions 396
Answers 398
References 398

10. Tribological Aspects of Gears 400
10.1 Spur Gears 401
10.2 Friction and Wear of Spur Gears 401
10.3 Contact Stresses 407
10.4 Lubrication of Spur Gears 410
10.5 Surface Failures 412
10.6 Offline Monitoring of Gears 412
10.6.1 Offline condition monitoring – a case study 415
10.7 Online Monitoring of Gears 418
10.7.1 Online condition monitoring – a case study 419
Frequently Asked Questions 421
Multiple Choice Questions 425
Answers 426
References 427

Index 429