Nonlinear Optical Systems

Guiding graduate students and researchers through the complex world of laser physics and nonlinear optics, this book provides an in-depth exploration of the dynamics of lasers and other relevant optical systems, under the umbrella of a unitary spatio-temporal vision.

Adopting a balanced approach, the book covers traditional as well as special topics in laser physics, quantum electronics and nonlinear optics, treating them from the viewpoint of nonlinear dynamical systems. These include laser emission, frequency generation, solitons, optically bistable systems, pulsations and chaos and optical pattern formation. It also provides a coherent and up-to-date treatment of the hierarchy of nonlinear optical models and of the rich variety of phenomena they describe, helping readers to understand the limits of validity of each model and the connections among the phenomena. It is ideal for graduate students and researchers in nonlinear optics, quantum electronics, laser physics and photonics.

Luigi Lugiato is a Professor Emeritus at the Università dell’Insubria, Como, Italy. He has received numerous honors as a result of his many pioneering contributions in nonlinear optics and quantum optics. These include the Albert A. Michelson Medal of the Franklin Institute, the Quantum Electronics Prize of the European Physical Society, the Max Born Award of the Optical Society of America and the Fermi Prize and Medal of the Italian Physical Society. He is a member of the Academia Europaea and a Fellow of the Optical Society of America, the American Physical Society and the European Physical Society.

Franco Prati is an Associate Professor at the Università dell’Insubria, Como, Italy. He has worked in laser physics and nonlinear optics since 1987. His main contributions concern the study of temporal and spatio-temporal instabilities in nonlinear optical systems. He is the co-author of more than 80 papers in peer-reviewed journals, and he is an Outstanding Referee of the American Physical Society and a member of the Optical Society of America.

Massimo Brambilla is an Associate Professor at the Politecnico di Bari, Italy. He has worked in nonlinear and quantum optics since 1986, participating in the early studies of optical pattern formation and dynamics and contributing to more than 100 journal papers and numerous conference presentations. He is active in theoretical research on nonlinear optical systems, with a special focus on the spatio-temporal dynamics of coherent field and solitonic phenomena. He is a member of the Optical Society of America.
Nonlinear Optical Systems

LUIGI LUGIATO
Università degli Studi dell’Insubria, Italy

FRANCO PRATI
Università degli Studi dell’Insubria, Italy

MASSIMO BRAMBILLA
Politecnico di Bari, Italy
To Vilma, Roberta, Monica
Contents

Preface xiii

Part I Models, propagation, stationary phenomena 1

Introduction to Part I 3

1 The rate-equation model for the laser 5
 1.1 Absorption, stimulated emission and spontaneous emission 5
 1.2 Calculation of the B coefficient 7
 1.3 The laser 9

2 The interaction of a system of two-level atoms with the electromagnetic field 15
 2.1 The interaction Hamiltonian in the dipole approximation 15
 2.2 The two-level atom and its analogy with spin 1/2 17
 2.3 The rotating-wave approximation. Optical Bloch equations 19
 2.4 The Bloch vector and its nutation 21

3 The Maxwell–Bloch equations 29
 3.1 The Maxwell equations. Paraxial and slowly varying envelope approximations 29
 3.2 The Maxwell–Bloch equations. The plane-wave approximation 33
 3.3 Self-induced transparency, the sine–Gordon equation and solitons 34
 3.4 Superradiance and superfluorescence 37

4 Inclusion of the irreversible processes in the atomic equations 43
 4.1 Irreversible transition processes between the two levels 43
 4.2 Irreversible decay of the atomic polarization 45
 4.3 Damped Rabi oscillations and the approach to a stationary state 47
 4.4 The complete Maxwell–Bloch equations 48

5 Propagation in irreversible Maxwell–Bloch equations 49
 5.1 Linear theory 49
 5.2 Saturation and power broadening 53
 5.3 Nonlinear propagation for a monochromatic input field: The role of saturation and nonlinear phase shift 55
 5.4 Background linear dispersion and absorption 57
Contents

6 Optical nonlinearities. Materials with quadratic nonlinearities

6.1 Linear and nonlinear polarization 61
6.2 Media with a quadratic nonlinearity 63
6.3 The stationary state in the plane-wave approximation 67

7 Optical nonlinearities. Materials with cubic nonlinearities

7.1 The Kerr medium nonlinearity. Self-phase modulation 74
7.2 Temporal Kerr solitons 76
7.3 Spatial Kerr solitons 78
7.4 The case of three frequency bands. Cross-phase modulation and four-wave mixing 79
7.5 Optical phase conjugation 81

8 Optical resonators. The planar ring cavity. Empty cavity. Linear cavity

8.1 Optical cavities 85
8.2 Beam splitters 86
8.3 The planar ring cavity. Boundary condition, input and output fields. Transmission of the cavity 87
8.4 The empty cavity 90
8.5 The linear cavity. Frequency pulling and pushing, mode splitting 92

9 A nonlinear active ring cavity: the ring laser, stationary states

9.1 Calculation of the nontrivial stationary solutions 95
9.2 The low-transmission limit 99
9.3 The analogy with second-order phase transitions 101

10 The adiabatic elimination principle

10.1 General formulation of the principle 105
10.2 Adiabatic elimination of the atomic polarization in the Bloch equations. Limits of the optical pumping between two levels 107
10.3 The three-level optical-pumping scheme 108
10.4 The four-level optical-pumping scheme 110

11 A nonlinear passive ring cavity: optical bistability

11.1 Absorptive optical bistability 112
11.2 Dispersive optical bistability 117
11.3 Optical bistability in two-level systems: the general case 120
11.4 Functionalities of optically bistable systems 123

12 Modal equations for the ring cavity. The single-mode model

12.1 Transformation of coordinates and transformation of variables. Modal equations 127
12.2 Introduction of the low-transmission approximation 131
12.3 The single-mode model 132
12.4 Stationary solutions of the single-mode model 134
Table of Contents

Part I Nonlinear optical systems

<table>
<thead>
<tr>
<th>13</th>
<th>Single- and two-mode models</th>
<th>135</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1</td>
<td>A laser with an injected signal</td>
<td>135</td>
</tr>
<tr>
<td>13.2</td>
<td>A laser with a saturable absorber</td>
<td>139</td>
</tr>
<tr>
<td>13.3</td>
<td>The cubic model for dispersive optical bistability</td>
<td>142</td>
</tr>
<tr>
<td>13.4</td>
<td>A model for the degenerate optical parametric oscillator (and harmonic generation in a cavity) and its stationary solutions</td>
<td>144</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14</th>
<th>Nonlinear dynamics in Fabry–Perot cavities</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1</td>
<td>Modal equations for the Fabry–Perot cavity</td>
<td>151</td>
</tr>
<tr>
<td>14.2</td>
<td>The single-mode model for the Fabry–Perot cavity. Spatial hole-burning</td>
<td>156</td>
</tr>
<tr>
<td>14.3</td>
<td>A more convenient set of modal equations</td>
<td>159</td>
</tr>
<tr>
<td>14.4</td>
<td>Again the ring cavity: simplified forms of the models</td>
<td>163</td>
</tr>
<tr>
<td>14.5</td>
<td>The case of an atomic sample of length much shorter than the wavelength: difference-differential equations</td>
<td>165</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15</th>
<th>Inhomogeneous broadening</th>
<th>170</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1</td>
<td>Multimode dynamical equations</td>
<td>170</td>
</tr>
<tr>
<td>15.2</td>
<td>The single-mode model. The stationary state for the laser. Spectral hole-burning</td>
<td>172</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16</th>
<th>The semiconductor laser</th>
<th>177</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.1</td>
<td>Some elements of semiconductor physics</td>
<td>177</td>
</tr>
<tr>
<td>16.2</td>
<td>The p–n junction</td>
<td>179</td>
</tr>
<tr>
<td>16.3</td>
<td>The double heterojunction. Optical confinement</td>
<td>180</td>
</tr>
<tr>
<td>16.4</td>
<td>Band structure</td>
<td>182</td>
</tr>
<tr>
<td>16.5</td>
<td>Dynamical equations</td>
<td>184</td>
</tr>
<tr>
<td>16.6</td>
<td>Vertical-cavity surface-emitting lasers</td>
<td>190</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17</th>
<th>Lasers without inversion and the effects of atomic coherence</th>
<th>192</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.1</td>
<td>Model equations</td>
<td>192</td>
</tr>
<tr>
<td>17.2</td>
<td>Coherent population trapping</td>
<td>194</td>
</tr>
<tr>
<td>17.3</td>
<td>Electromagnetically induced transparency</td>
<td>196</td>
</tr>
<tr>
<td>17.4</td>
<td>Amplification without inversion</td>
<td>199</td>
</tr>
<tr>
<td>17.5</td>
<td>Lasing without inversion</td>
<td>202</td>
</tr>
</tbody>
</table>

Part II Dynamical phenomena, instabilities, chaos

<table>
<thead>
<tr>
<th>18</th>
<th>Some general aspects in nonlinear dissipative dynamical systems</th>
<th>205</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.1</td>
<td>Stationary solutions and their stability</td>
<td>210</td>
</tr>
<tr>
<td>18.2</td>
<td>Attractors and repellers; bistability and multistability</td>
<td>212</td>
</tr>
<tr>
<td>18.3</td>
<td>Other kinds of attractors: limit cycles, tori, strange attractors; deterministic chaos; generalized multistability</td>
<td>213</td>
</tr>
<tr>
<td>18.4</td>
<td>Transitions induced by the variation of a control parameter</td>
<td>214</td>
</tr>
</tbody>
</table>
19 Special limits in the single-mode model
19.1 Classification of lasers
19.2 Adiabatic elimination of the atomic variables (the good-cavity limit)
19.3 Adiabatic elimination of the atomic polarization: the single-mode rate-equation model
19.4 Adiabatic elimination of the electric field (the bad-cavity limit)

20 The linear-stability analysis of the Maxwell–Bloch equations
20.1 Coupled multimodal equations for field and atomic variables. Single-mode and multimode instabilities
20.2 Multimode instabilities and their features
20.3 Single-mode instabilities and their features
20.4 The general connection between single-mode and multimode instabilities
20.5 The resonant case, amplitude and phase instabilities

21 Adiabatic elimination in the complete Maxwell–Bloch equations
21.1 The rate-equation approximation
21.2 Adiabatic elimination of the atomic polarization and comparison with the rate-equation approximation
21.3 Adiabatic elimination of the atomic variables

22 Dynamical aspects in the laser
22.1 Linear-stability analysis of the trivial stationary solution in the standard laser
22.2 Linear-stability analysis of the trivial stationary solution in the laser without inversion
22.3 Class-C lasers: the analogy with the Lorenz model and optical chaos
22.4 The resonant single-mode laser instability
22.5 The multimode amplitude instability
22.6 The multimode phase instability
22.7 An ultrathin medium: the multimode amplitude instability in the Fabry–Perot laser

23 Single-mode and multimode operation in inhomogeneously broadened lasers
23.1 Multimode and single-mode instabilities
23.2 Mode-locking

24 Dynamical aspects in optical bistability
24.1 Critical slowing down
24.2 Multimode instabilities in optical bistability
24.3 Single-mode instabilities in optical bistability

25 Self-pulsing in other optical systems
25.1 A laser with an injected signal. Frequency locking and coexisting attractors