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Counting Problems

This book is a study of the computational complexity of counting problems,

especially those that can be expressed as a sum-of-product computation. Our

aim is to give a systematic presentation to a body of work, mostly from the past

two decades, that gives some comprehensive classiications to these sum-of-

product computations from the perspective of computational complexity. All

these sum-of-product problems are computable within the level of the com-

plexity class #P. The classiication theorems are stated in the following form,

known as a dichotomy: For a class of problems expressible within a frame-

work, every problem in the class is either computable in polynomial time, or it

is #P-hard to compute, i.e., it is as hard as any other problem in the class #P.

1.1 Counting Problems and Models of Computation

We assume the readers have some basic and preliminary knowledge about

computational complexity such as P and NP, for example, at a level provided

by an undergraduate course on the subject of the Theory of Computing. This

knowledge is not crucial, however, as we will not use many general results

but rather present the framework and develop the necessary proof techniques

gradually. Any reader wishing to be more thoroughly acquainted with the full

scope of computational complexity theory can consult a standard textbook,

e.g., [Sip96, Pap94, AB09]. On the other hand, a reader with no prior exposure

to complexity theory but with a strong mathematical background, for example,

at a level provided by a solid undergraduate mathematics education, should be

able to follow all proofs in the book, provided he or she is willing to accept

a handful of results without proof. These results can be found elsewhere, and

the particular proofs of these do not impact an understanding of the material

in this book. Such a reader, however, would beneit from a wider exposure to
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2 1 Counting Problems

complexity theory to gain some insight as to why certain problems are investi-

gated and what questions are asked.

Briely, in computational complexity theory a problem consists of an ini-

nite set of problem instances, rather than one particular instance. For exam-

ple, the problem Determinant is to compute the determinant of an arbitrarily

given matrix, not one particular matrix. Solving a problem is to say that there

is an algorithm that solves all problem instances. The formal notion of an algo-

rithm is a Turing machine, an idealized computer that carries out step-by-step

operations according to a initary program, valid for all problem instances. The

eficiency of the algorithm is measured in terms of the maximum number of

steps T (n) the Turing machine may take for all problem instances of size n.

For example, for integer matrices, the problem instance of Determinant is

an integer square matrix in which the size is the sum of the bit length of all

the matrix entries. Formally the complexity classes P and NP are deined for

decision problems, those problems for which the answer to each instance is

either Yes or No. For example, the problem Vertex Cover is the following

decision problem: Given a problem instance consisting of a graph G = (V,E )

and an integer parameter k, whether there is a subset of vertices S ⊆ V such

that |S| ≤ k and every edge in E is incident to at least one vertex from S. A

decision problem � is in the complexity class P if there is an algorithm solving

the problem, i.e., gives a correct Yes or No answer to every problem instance,

such that T (n) is bounded above by a ixed degree polynomial in n. The class

NP consists of all decision problems � for which there exists some problem �

in P, and some polynomial p(·), such that for all problem instances x of �, x is

a Yes instance of � iff there exists some y with size |y| ≤ p(|x|) and the pair

〈x, y〉 is a Yes instance of �. Intuitively, y is a certiicate of size polynomially

bounded in x, such that it can be veriied in polynomial time that y certiies that

x is a Yes instance of �.

There are historical as well as internal logical reasons, mainly from com-

putability theory, why the deinitions of P and NP are formulated in terms of

decision problems. Even though a problem may be more naturally stated as a

search problem or a numerical problem, it can often be restated as a decision

problem such that solving the decision problem is equivalent to solving the

search or numerical problemwithin a polynomial factor in eficiency. For exam-

ple, if there is an algorithm that solves the decision problem Vertex Cover,

then by binary search on the value k one can ind the minimum size k0 of any

vertex cover of G. Furthermore, by considering a sequence of at most O(k0n)

graphs obtained by removing some vertices and their incident edges from G of

n vertices, and repeatedly invoking the decision algorithm, one can compute

a minimum size vertex cover of G. For the Determinant problem one can
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1.1 Counting Problems and Models of Computation 3

formulate a decision problem as whether the determinant of an integer matrix

is greater than a threshold value. It is easy to compute an a priori bound for a

given determinant; a binary search will then ind the exact determinant value in

polynomial time from the decision algorithm. Such reductions show that there

is a theoretical equivalence between a decision problem and its search or numer-

ical version; however, in reality, a polynomial-time algorithm usually directly

computes the output value, without going through the decision version.

In this book we mostly study counting problems. Typically these include

counting the number of speciic combinatorial conigurations, such as vertex

covers, matchings, or proper colorings in a graph, or the evaluation of par-

tition functions in statistical physics. For such problems, it is not expected

that they are equivalent to their decision problem counterparts in polynomial

time [Tod91]. Instead we deine #P, a complexity class of functions for counting

problems.

For every NP problem � one can formulate a corresponding counting

problem using the problem � in P that deines � in terms of certiicates.

For any problem instance x of �, we deine the function f (x) as the num-

ber of certiicates y such that the pair 〈x, y〉 is a Yes instance of �. The

class of all such functions is denoted as #P. This complexity class, deined

by Valiant [Val79a, Val79b] in the study of the complexity of the permanent

function, will play a central role in this book. Natural counting problems corre-

sponding to decision problems at the level of NP that have a nonnegative integer

solution can all be formulated as a problem in #P. To include more problems

at this level we also consider problems whose solutions are not necessarily

nonnegative integers, such as those from statistical physics. To capture their

computational complexity, we consider the closure of #P under polynomial-

time Turing reductions, namely, those problems solvable by a polynomial-time

algorithm given free access to a hypothetical algorithm to some problem in #P,

where each query costs only the time it takes to write the query. This class is

formally denoted as FP#P, where FP denotes the class of functions computable

by a polynomial time Turing machine. Typical problems in #P include counting

the number of satisfying assignments to a Boolean formula or the number of

vertex covers in a graph. Weighted versions of these problems as well as sum-

of-product computations such as partition functions from statistical physics can

be easily formulated as problems that are polynomial-time reducible to #P.

The formal Turing machine model is naturally suited to the study of compu-

tation over discrete structures such as integers or graphs. However, in this book

it is more natural to consider computation over the real or complex numbers.

Doing so causes a technical issue of how one may represent exactly the individ-

ual real or complex numbers, and how to account for the complexity of various
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4 1 Counting Problems

operations on these numbers. This is a question relating to the model of com-

putation. One can, for example, take the computational model on real numbers

by Blum–Shub–Smale [BSS89, BCSS98]. This is more intuitive; however, in a

strict logical sense this is not equivalent to the classical Turing machine model

and the results we obtainwould not have the same logical meaning. So, formally

we still consider the classical Turing machine model, and restrict the objects of

computation to algebraic (complex) numbers. Thus, technically, every number

α is speciied by a inite irreducible polynomial f (X ) ∈ Z[X] with integer coef-

icients, and a small disk of rational radius containing a unique root α of f (X ).

We discuss models of computation further in Section 1.5. But this is not a cen-

tral issue for the type of sum-of-product computations we treat in this book;

basically the theory can be developed in any reasonable model of computation

in which sum and product can be eficiently computed.

Some basic notations. We denote byN the set of natural numbers {0, 1, 2, . . .},
by Z the set of all integers {. . . ,−2,−1, 0, 1, 2, . . .}, and by Z+ the set of

positive integers {1, 2, 3, . . .}. We denote by Q, R, and C the sets of rational

(algebraic) real, and complex numbers respectively. We denote i =
√

−1. All

graphs are inite and undirected, unless stated otherwise. Graphs may or may

not have loops and parallel edges, which should be clear from the context. If

α and β are inite bit strings, then αi denotes its ith bit, and α ⊕ β denotes

its bitwise XOR string. For a binary string α, its Hamming weight is denoted

by wt(α), i.e., the number of 1’s in α. We will generally treat a column vec-

tor v ∈ Cn and the row vector v
T, its transpose, interchangeably. For a matrix

M ∈ Cm×n and a v ∈ Cn, we writeMv as its matrix vector product. Sometimes

we may write Mv even though we explicitly listed the elements of v as a row

vector. The formal meaning is justMv
T, if v is a row vector. Similar comments

apply for vM. If A = (ai j ) ∈ Cm×n and B = (bst ) ∈ Ck×ℓ, we denote A⊗ B as

the tensor product matrix in Cmk×nℓ, indexed by the pairs (i, s) ∈ [m] × [k] for

rows and ( j, t ) ∈ [n] × [ℓ] for columns, both in lexicographic order.

We use ≤P
T
or simply ≤T to denote polynomial time Turing reducibility,

and ≡P
T
or simply ≡T to denote polynomial time Turing equivalence.

1.2 Three Classes of Counting Problems

Wenow formally deine three frameworks for the types of sum-of-product com-

putations in this book. Fix a inite domain [q] = {1, 2, . . . , q}, for a positive

integer q. If q = 2 it is called the Boolean domain. We consider any set of

functions F on domain [q], where each f ∈ F maps from [q]k to a commu-

tative semiring R, for some k ≥ 0, called the arity of f . If k = 0, then f is a

constant. If k = 1, 2, or 3, then f is called a unary, binary, or ternary function
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1.2 Three Classes of Counting Problems 5

respectively. In this book, by default we will take the semiringR to be the (alge-

braic) complex numbers, but still denote it as C. Functions in F are also called

signatures or local constraint functions. A signature f is symmetric if its value

is invariant under permutation of its variables. For the Boolean domain this

means that the value of f depends only on the Hamming weight of its input.

1.2.1 Spin Systems or Graph Homomorphism Problems

A spin system on a graph G = (V,E ) is the following model and it comes

from statistical physics. Let [q] = {1, . . . , q} be a inite domain, where q ≥ 1

is an integer. We consider all vertex assignments σ : V → [q]. There is an

edge function f : [q]2 → C. For each assignment σ we have an evaluation
∏

(u,v)∈E f (σ (u), σ (v)), a product over every edge (u, v) ∈ E. Then we deine

the partition function

Z f (G) =
∑

σ :V→[q]

∏

(u,v)∈E

f (σ (u), σ (v)). (1.1)

In physics, the partition function represents the aggregate of thermodynamic

variables or a normalizing factor of a system, as one sums over all possible

conigurations of the particles.

The value f (σ (u), σ (v)) is the local contribution, the product
∏

(u,v)∈E f (σ (u), σ (v)) is the weight of the assignment σ , and the parti-

tion function is the sum of weights over all assignments. If G is an undirected

graph, as is typically the case, we require f to be a symmetric function,

f (i, j) = f ( j, i), for all i, j ∈ [q].

If q = 2 this is called a 2-spin system, and for general q it is called a q-spin

system.

Well-known examples of a 2-spin system include the Ising model [Isi25],

where f (0, 0) = f (1, 1) = a and f (0, 1) = f (1, 0) = b for some two constants

a and b. Sometimes there is also a vertex weight function, represented by a

unary function normalized to u(0) = 1 and u(1) = λ. Then the partition func-

tion of the Ising model is

Za,b,λ(G) =
∑

σ :V→[2]

a|{(u,v)∈E:σ (u)=σ (v)}|b|{(u,v)∈E:σ (u)�=σ (v)}|λ|{v∈V :σ (v)=1}|. (1.2)

Exercise: Fix any constant J. One can deine the Hamiltonian function H(σ )

for any assignment σ : V → {−1,+1},

H(σ ) = −J
∑

(u,v)∈E

σ (u)σ (v).
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6 1 Counting Problems

(It is called ferromagnetic if J > 0 and antiferromagnetic if J < 0.) Then

the partition function of the Ising model can be deined by Z(G) =
∑

σ :V→{−1,+1} e
−βH(σ ), where β ≥ 0 is called the inverse temperature. Show

that this function Z(G) can be realized by the sum-of-product expression

Za,b,λ(G).

A generalization of the Ising model is called the Potts model [Pot52], where

for q ≥ 2 and i, j ∈ [q], f (i, i) = a and f (i, j) = f ( j, i) = b for i �= j. One can

normalize b = 1 and write a as 1 + γ for a parameter γ . In this parameteriza-

tion the partition function of the Potts model is

ZPotts(G; q, γ ) =
∑

σ :V→[q]

∏

(u,v)∈E

(1 + γ δ(σ (u), σ (v))), (1.3)

where δ(i, j) = 1 if i = j, and 0 otherwise.

The partition function of the Potts model can be linked to the Tutte poly-

nomial T(G; x, y) by setting γ = y− 1 and q = (x− 1)(y− 1). Indeed, one

way to deine the Tutte polynomial in terms of q and γ is that (x− 1)κ (V,E )(y−
1)|V | T(G; x, y) is equal to (cf. Deinition 6.27)

ZTutte(G; q, γ ) =
∑

F⊆E

qκ (V,F )γ |F|,

where κ (V,F ) is the number of connected components in the spanning sub-

graph (V,F ).

Although the Tutte polynomial is deined for any q, if we restrict to a positive

integer q, then

ZTutte(G; q, γ ) = ZPotts(G; q, γ ).

To prove this equality, we consider expanding the product
∏

(u,v)∈E (1 +
γ δ(σ (u), σ (v))) in (1.3) as a sum indexed by F ⊆ E, which collects a factor

γ |F|, namely
∏

(u,v)∈E

(1 + γ δ(σ (u), σ (v))) =
∑

F⊆E

γ |F|
∏

(u,v)∈F

δ(σ (u), σ (v)).

The product term indexed by F is 1 iff σ (u) = σ (v) for all u and v that belong

to the same connected component of the subgraph (V,F ), and 0 otherwise. In

(1.3) the sum
∑

σ :V→[q] has exactly q
κ (V,F ) such terms.

Spin systems are also called graph homomorphisms, and they come from a

different source. Given two graphs G and H, a graph homomorphism from G

to H is a map σ from the vertex set of G to the vertex set of H such that for

every edge (u, v) in G, the image is also an edge in H. In general, multigraphs

are allowed; thus, for example, an edge inG can be mapped to a loop inH. The
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1.2 Three Classes of Counting Problems 7

(a) #VertexCover (b) #Antichain

Figure 1.1. Target graphs H and the combinatorial counting problems they deine

as #H-coloring problems.

counting problem is to compute the number of graph homomorphisms from G

to H.

We will ix an H, and consider the computational problem where G is the

input. A special case is whenH = Kq, the complete graph on q vertices, without

self-loops. In this case, a graph homomorphism from G to H is a valid coloring

of the vertices of G, using at most q distinct colors, as any adjacent pair of

vertices of G must be mapped to distinct vertices of H. Owing partly to this

special case, counting graph homomorphisms to H in general is also called

#H-colorings, and H is called the target graph.

Graph homomorphisms can express a variety of combinatorial problems. In

fact, their principal purpose is to express and then treat a wide variety of locally

deined graph properties in a uniform way. For example, if H is a graph con-

sisting of two vertices {T, F} and two edges {(T, T), (T, F)}, a loop and an edge
between the two vertices (see Figure 1.1a), then the #H-coloring problem is the

counting problem of Vertex Cover, i.e., to count the number of vertex covers

in graphG, denoted as #VC. Indeed a homomorphism fromG to thisH is a two-

coloring of vertices ofG such that the subset of vertices ofGmapped to T forms

a vertex cover. By lipping the intended meaning of T and F, this also counts

the number of independent sets inG. Of course this simply relects the fact that

a subset S ⊆ V (G) is a vertex cover iff its complement Sc ⊆ V (G) is an inde-

pendent set. As another example, suppose H is the two-vertex directed graph

connected by a single directed edge and both vertices have one directed self-

loop (see Figure 1.1b). Then the #H-coloring problem takes directed graphs as

input. If the input is a directed acyclic graph, then it deines a partial order, and

the #H-coloring problem is to compute the number of antichains (or equiva-

lently, the number of lower sets, i.e., downward closed sets in the partial order,

or equivalently, the number of upper sets) in this partial order. If the input is not

acyclic, then every strongly connected component must be mapped to one ver-

tex in H, and the #H-coloring problem is to count the number of antichains in

the induced partial order after collapsing each strongly connected component.

Exercise: Show that #VC can be expressed as #H-coloring by deining explic-

itly the binary constraint function.
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8 1 Counting Problems

(a) q = 2 (b) q = 3 (c) q = 4

Figure 1.2. Target graph H for counting q-particle Widom–Rowlinson conigura-

tions for q ∈ {2, 3, 4} as an #H-coloring problem.

Exercise: Show that there is a bijection between the set of antichains and the

set of lower sets. Conclude that the number of antichains is the same as the

number of lower sets. By symmetry the same is proved for upper sets.

More generally, we consider weighted graph homomorphisms . Let A be

a q-by-q matrix over C. Given a graph or a directed graph G = (V,E ), the

(weighted) graph homomorphism problem is to compute

ZA(G) =
∑

σ :V→[q]

∏

(u,v)∈E

Aσ (u),σ (v). (1.4)

The target graph H is now deined by the matrix A, which is the weighted adja-

cency matrix of H. When A is a 0-1 matrix, then this is the unweighted ver-

sion of graph homomorphism. The matrix A can also be identiied as a binary

function. In the case of Vertex Cover the function is the binary Boolean Or

function. For Independent Set this is the Nand function. For the problem

of counting antichains, the function is the binary Implication function. For

q-coloring, this is the binary Disequality function on domain [q].

This is exactly the same notion of a partition function in statistical physics.

The Isingmodel corresponds to the partition function with matrixA =
[

a b

b a

]

.

The Potts model corresponds to the partition function with matrix A = Jq +
γ Iq, were Jq is the q× q matrix of all 1’s and Iq is the q× q identity matrix,

and γ is a parameter.

The q-particle Widom–Rowlinson model [WR70] corresponds to the #H-

coloring problem in which the domain size is q+ 1,H is the star graph on q+ 1

vertices and all vertices have self-loops (see Figure 1.2). The q-type Beach

model [BS94, BS95] corresponds to the #H-coloring problem in which the

domain size is 2q, H is the complete graph on q vertices, each of these q ver-

tices has a pendant vertex, and all 2q vertices have a self-loop (see Figure 1.3).
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1.2 Three Classes of Counting Problems 9

(a) q = 2 (b) q = 3 (c) q = 4

Figure 1.3. Target graph H for counting q-type Beach model conigurations for

q ∈ {2, 3, 4} as an #H-coloring problem.

For more on this connection with statistical physics, see [Wel93, Chapter 4]

or [Thu09, Chapter 2] (as well as [Bax82]).

Graph homomorphism can be viewed as a special case of counting constraint

satisfaction problems, where instead of one binary constraint function there can

be a set of constraint functions.

1.2.2 Constraint Satisfaction Problems

A counting constraint satisfaction problem (#CSP) [CKS01] is parametrized

by a set of local constraint functions F . It is denoted by #CSPq(F ) when the

constraint functions inF are deined over a domain [q] of size q. An instance of

#CSPq(F ) is a inite set of variables x1, x2, . . . , xn, and a inite setC of clauses.

Each clause is a constraint f ∈ F of some arity k depending on f together with a

sequence of k (not necessarily distinct) variables xi1 , . . . , xik ∈ {x1, x2, . . . , xn}.
The output is

∑

x1, . . . , xn ∈ [q]

∏

(

f , xi1 , . . . , xik

)

∈ C

f (xi1 , . . . , xik ). (1.5)

In the study of #CSPq(F ), the setF is usually inite and considered ixed. In

particular, there is a maximum arity k among functions in F . An input instance

on n variables can be described by nk bits for a ixed k. Hence we consider

the input size is n. When it is the Boolean domain (i.e., q = 2), we denote it

simply as #CSP(F ). If F consists of a single function f we write #CSP( f ) for

#CSP({ f }). We write similarly #CSP( f , g) if F = { f , g}, and #CSP(F , g) for

#CSP(F ∪ {g}), etc.
The canonical example of a #CSP is #Sat, or counting Boolean Satisiabil-

ity, the problem of counting the number of satisfying assignments to a given

Boolean formula. As a constraint satisfaction problem, it is #CSP(F ), with
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10 1 Counting Problems

F = {Ork|k ≥ 1} ∪ {�=2}, where Ork is the Or function of arity k and ( �=2) is

the binary Disequality function. Here are several more well-known examples

of #CSP(F )’s over the Boolean domain and their corresponding constraint sets:

Sat has F = {Ork|k ≥ 1} ∪ {�=2}
3Sat has F = {Or3, �=2}

1-in-3Sat has F = {Exact-One3, �=2}
NAE-3Sat has F = {Not-All-Equal3, �=2}

Mon-Sat has F = {Ork|k ≥ 1}
Mon-3Sat has F = {Or3}

Mon-1-in-3Sat has F = {Exact-One3}
Mon-NAE-3Sat has F = {Not-All-Equal3}

By #CSPd (F ), we denote the special case of #CSP(F ) in which every vari-

able appears amultiple of d times. Note that #CSP(F ) is the same as #CSP1(F ),

and #CSP2(F ) is the same as every variable appearing an even number of times.

1.2.3 Holant Problems

A Holant problem is parametrized by a set of local constraint functions F , also

called signatures . A signature grid � = (G, π ) over F consists of a graph

G = (V,E ) and a mapping π that assigns to each vertex v ∈ V an fv ∈ F and

a linear order of the incident edges at v. The arity of f is equal to the degree at

v, and the incident edges at v are associated with the input variables of fv . If

all signatures in F are symmetric then there is no need to assign an order for

incident edges at any v.

Deinition 1.1. For a set F of signatures over a domain [q], we deine

Holantq(F ) as

Input: A signature grid � = (G, π ) over F

Output:

Holantq(�;F ) =
∑

σ :E→[q]

∏

v∈V

fv (σ |E(v)),

where

� G = (V,E ), and E(v) denotes the incident edges of v and
� σ |E(v) denotes the restriction of σ to E(v), and fv (σ |E(v)) is the evaluation
of fv on the ordered input tuple σ |E(v).

In Volume I of this book we exclusively present the theory over the Boolean

domain q = 2. We use Holant(F ) to denote Holant2(F ). We also denote
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