Pediatric Emergency and Critical Care Ultrasound
Pediatric Emergency and Critical Care Ultrasound

Edited by

Stephanie J. Doniger, MD RDMS FAAP FACEP

Director of Emergency Ultrasound
Director of Pediatric Emergency Ultrasound Fellowship
Pediatric Emergency Medicine Physician
Division of Emergency Medicine
Children's Hospital and Research Center Oakland
Oakland, CA, USA
Clinical Instructor
Department of Emergency Medicine
University of California San Francisco School of Medicine
San Francisco, CA, USA
CAMBRIDGE
UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.
It furthers the University’s mission by disseminating knowledge in the
pursuit of education, learning, and research at the highest international
levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781107062344

© Stephanie J. Doniger 2013

Emily Evans artwork © Cambridge University Press.

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press.

First published 2013
Printed in Spain by Grafos SA, Arte sobre papel

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging in Publication data
Pediatric emergency and critical care ultrasound / [edited by] Stephanie
J. Doniger. p. ; cm.
Includes bibliographical references and index.
ISBN 978-1-107-06234-4
1. Doniger, Stephanie J., 1975–
[DNLM: 1. Ultrasonography — methods. 2. Child. 3. Critical Care –
methods. 4. Emergency Medical Services — methods.
5. Infant. WN 208]
618.92 007543–dc23
2012047373

Cambridge University Press has no responsibility for the persistence or
accuracy of URLs for external or third-party internet websites referred to in
this publication, and does not guarantee that any content on such websites is,
or will remain, accurate or appropriate.

Every effort has been made in preparing this book to provide accurate and
up-to-date information which is in accord with accepted standards and
practice at the time of publication. Although case histories are drawn from
actual cases, every effort has been made to disguise the identities of the
individuals involved. Nevertheless, the authors, editors, and publishers can
make no warranties that the information contained herein is totally free from
error, not least because clinical standards are constantly changing through
research and regulation. The authors, editors, and publishers therefore
disclaim all liability for direct or consequential damages resulting from the use
of material contained in this book. Readers are strongly advised to pay careful
attention to information provided by the manufacturer of any drugs or
equipment that they plan to use.
I am so excited that such a talented and experienced group of authors contributed their wealth of knowledge to this text. I am fortunate to be a part of such a small, but growing field of Pediatric Emergency Ultrasound. I look forward to seeing the development of pediatric ultrasound, and how it can positively impact the care of our smallest and most vulnerable of patients.

First and foremost, I dedicate this text to my parents who have served as models and encouraged me along the way. To my father Marvin who has taught me the value of hard work and inspired me in his superhuman battle against all medical odds. To my mother Marsha who has dedicated her life to her family and over the years has become my very best friend.

Along the way, I have been fortunate to have some amazing mentors. To J. Christian Fox, who initially planted the idea of ultrasound eventually being useful in Pediatric Emergency Medicine, while in the Flying Samaritans clinic in El Testerazo, Mexico. To Resa Lewiss, who took a chance on me as the first Pediatric Emergency Medicine-trained physician to do an Emergency Ultrasound fellowship. To my mentor Ghazala Sharieff whose invaluable advice, guidance, and mentorship have helped shape my career, and who has become a close friend. To my colleagues at Children’s Hospital Oakland – I am so privileged to have joined your family, and am constantly inspired by all of you. It has been such a joy to see that even the most experienced of physicians is excited by ultrasound. I look forward to continuing to teach you, and to learn from you. To all of my colleagues that I am constantly learning from, this text would not have been possible without you.

A special thank you to Wendi Karam and Kelly Kroll, who provided their beautiful children to be photographed in this text; to Ricky Knack, the talented nurse, photographer, and friend who photographed them. To Laura Berg, MD, also did a tremendous last-minute job rescuing the illustrations. To my international colleagues who constantly inspire me and remind me why I went into medicine in the first place. I will always have a particular place in my heart for the people in El Testeraoz, Mexico and Roatan, Honduras.

And last but certainly not least, to my patients and their families who give me the unique opportunity to enter their lives and help them in their most vulnerable times of need. Thank you for letting me into your lives to treat your most precious gifts – your children.
Contents

Foreword page ix
J. Christian Fox and Rebecca Kasl
List of contributors x

Section 1 Ultrasound fundamentals
1 Introduction 1
Stephanie J. Doniger
2 Physics and “knobology” 4
Alyssa Abo
3 Getting started 21
Jason A. Levy
4 Ultrasound in austere environments 27
Dana R. Sajed and Vicki E. Noble

Section 2 Diagnostic ultrasound
4 The extended focused assessment with sonography for trauma (E-FAST) 40
Samuel H. F. Lam
5 Focused cardiac ultrasound 57
Stephanie J. Doniger
6 Pulmonary ultrasound 71
Fernando Silva and Roberto Copetti
7 Inferior vena cava, aorta assessment 86
Faiza Al Talaq and Vicki E. Noble
8 HEENT (head, ears, eyes, nose, throat): ocular, sinus, neck ultrasound 97
Jennifer R. Marin and Arun Nagdev
9 Renal, bladder 119
David Kessler
10 The pediatric abdomen 134
Adam B. Sivitz
11 Hepatobiliary 160
Alexander C. Arroyo
12 Male genitourinary: scrotal pain, swelling 178
Joshua Rempell and Andrew S. Liteplo
13 Pelvic obstetrics 191
Heidi Ladner and Tony Berger
14 Pelvic gynecology 210
Katja Goldflam and Resa E. Lewiss

Section 3 Procedural ultrasound
15 Introduction 225
Stephanie J. Doniger
16 Vascular access 233
Dave Spear and Stephanie J. Doniger
17 Bladder ultrasound for catheterization and suprapubic aspiration 251
Alexander C. Arroyo
18 Ultrasound-guided lumbar puncture 260
Alyssa Abo
19 Soft tissue applications 269
Daniela Ramirez-Schrempp and Andrew S. Liteplo
20 Orthopedics: extremity fractures, reductions, and arthrocentesis 279
Antonio Riera and Lei Chen
21 Peripheral nerve blocks 294
Jason W. Fischer
22 Pericardiocentesis, thoracentesis, and paracentesis 305
Rebecca L. Vieira
23 Cutting-edge procedures: the airway 315
Randall T. Rhyne, Jamie A. Jenkins, and Beatrice Hoffmann
Contents

Section 4 Special populations

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>Introduction</td>
<td>Stephanie J. Doniger</td>
</tr>
<tr>
<td>23</td>
<td>Neonates and infants</td>
<td>Alaa A. Eldemerdash, Mahmoud Elbarbary, and Stephanie J. Doniger</td>
</tr>
<tr>
<td>24</td>
<td>The critically ill: respiratory and hemodynamic support</td>
<td>Mahmoud Elbarbary</td>
</tr>
</tbody>
</table>

Index 352
Foreword

The chief religious and political authority of the 1600s was the Roman Catholic Church. It is under their traditional worldview that Galileo’s heliocentric planetary model constituted the heart of the debate among his scholarly colleagues. While this rift between Church and State is the one popularized, the real conflict was between conservative and progressive attitudes of the scientists themselves. Though no invention of his own, the telescope that Galileo used was admired throughout Europe. Initially, many other respected scholars of his time such as Johannes Kepler did not own, or even know how to use, this “spyglass.” This lack of familiarity transformed into an excuse for others not to fully believe what Galileo had seen with his own eyes. The key word here is “initially.” Once others learned how to grind the lenses to develop their own telescopes, they (grudgingly) swallowed their pride and confirmed his observations that the moon did indeed have a rocky surface and Jupiter had four moons.

In 1816, the stethoscope was invented and to this day serves as the current method of performing a physical examination of a patient in a doctor’s office, hospital bed, or in the emergency room. In fact not much about the physical examination has really changed substantially since the time of Hippocrates. When a patient complains of pain, presently, physicians examine the patient based on their knowledge of human anatomy. In the doctor’s mind are images of organs beneath the skin that may be related to an ailment; the physician seeks to probe or listen to those organs by manual palpation or listening with a stethoscope. But only the most obvious of abnormalities are detected in this manner.

What if physicians instantly had access to more precise visual information about those organs? With the advent of compact, battery-powered, handheld ultrasound machines, doctors can now peer through the skin at internal organs to see abnormalities even without having to expose patients to radiation. These devices are truly revolutionary tools that are profoundly enhancing the doctor/patient relationship throughout diagnostic medicine. Handheld ultrasound units, unlike their cart-based older siblings, can be deployed in every clinical arena, easily carried about by the physician. The time it takes to perform the examination is similar to what would be required for a routine standard hand/stethoscope examination, while the return on this small investment is significantly greater. More specifically, handheld ultrasound devices can uncover many diseases and pediatric conditions at an earlier time before the patient is in crisis. In any healthcare setting, portable ultrasound devices transform the typically passive role of the physician, family, and patient alike into one that engages all in proactive and, at times, even preventative healthcare. This is satisfying for both the practitioner and patient, and can lead to effective and more cost-efficient health outcomes. This has far-reaching implications, not only in large urban medical communities but also in rural medicine and in telemedicine, where ultrasound imaging may be the only definitive link to a patient’s illness or injury.

This incoming wave of innovation changes the way patients and physicians work together to address medical issues that may not be revealed by the manual physical examination. To demonstrate how point-of-care ultrasound has revitalized the pediatric physical examination, Stephanie Doniger and colleagues have done an outstanding job in bringing these concepts to life by supplying us with high-quality images. These images can be referred to in our busy clinical areas, or when studied separately may trigger a consideration in the differential diagnosis of a clinical conundrum not possible without the knowledge of the capabilities inherent in this powerful device.

Other ways to image our patients involve exposing them to radiation. A single computed tomography (CT) scan of the abdomen and pelvis is roughly equivalent to receiving 500 chest-X-rays-worth of ionizing radiation. Of course, one must always consider risk/benefit when evaluating the ill child; however, if the answer can come via sound instead of beta rays then we should be ashamed to NOT reach for ultrasound in these children. After all, it was Hippocrates who first told us to “do no harm.” In no other place is our oath more relevant than in our youngest patients who have no voice in the matter.

In the end, humans are creatures of habit, and thus, as doctors, we find ourselves complacent and happy with our daily routine. We show up to work and engage in a familiar pace and role with our nurses and patients, well within a comfort zone that was established way back in residency training. Yet it is our responsibility to achieve more. Galileo permanently changed humankind’s perception of the planets in our universe because he knew a feasible, revolutionary invention when he saw one, and the story today about ultrasound is not so different. Ultrasound has the capacity to alter thinking in powerful ways that will shape the future for years to come. The physicians of tomorrow will wonder how we ever got by without this knowledge.

J. Christian Fox, MD RDMS
Rebecca Kasl, BS
Contributors

Alyssa Abo, MD
Director, Pediatric Emergency Ultrasound
Division of Pediatric Emergency Medicine
Cohen Children’s Medical Center
Department of Emergency Medicine
North Shore University Hospital
Assistant Professor of Emergency Medicine
Hofstra North Shore-LIJ School of Medicine
Manhasset, NY, USA

Faiza Al Talaq, MD
Division of Ultrasound in Emergency Medicine
Massachusetts General Hospital
Boston, MA, USA

Alexander C. Arroyo, MD FAAP
Director, Pediatric Emergency Medicine
Director, Pediatric Emergency Medicine Ultrasound Research
Division of Emergency Medicine
Maimonides Medical Center
Brooklyn, NY, USA

Laura J. Berg, MD
Department of Emergency Medicine
North Memorial Medical Center
Robbinsdale, MN, USA

Tony Berger, MD MS
Department of Emergency Medicine
Staff Physician
Department of Emergency Medicine
Kaiser South Sacramento Medical Center
Sacramento, CA, USA

Lei Chen, MD MHS
Associate Fellowship Director
Section of Emergency Medicine
Associate Professor of Pediatrics
Yale University School of Medicine
New Haven, CT, USA

Roberto Copetti, MD
Emergency Department
Latisana General Hospital
Latisana, Italy

Stephanie J. Doniger, MD RDMS FAAP FACEP
Director of Emergency Ultrasound
Director, Pediatric Emergency Ultrasound Fellowship
Division of Emergency Medicine
Children’s Hospital and Research Center Oakland
Oakland, CA, USA
Department of Emergency Medicine
University of California San Francisco School of Medicine
San Francisco, CA, USA

Mahmoud Elbarbary, MD PhD MSc
Consultant and Assistant Professor of Critical Care Medicine
National Guard Health Affairs
King Saud Ben Abdulaziz University for Health Sciences
Riyadh, Saudi Arabia

Alaa A. Eldemerdash, MD FAAP
Consultant Neonatologist
Head of Neonatal Intensive Care Unit
Latifa Hospital
Dubai, UAE

Jason W. Fischer, MD MSc
Director, Emergency Ultrasound Program
Division of Emergency Medicine
The Hospital for Sick Children, Toronto
Assistant Professor of Paediatrics
University of Toronto
Toronto, Ontario, Canada

John Christian Fox, MD, RDMS
Professor of Clinical Emergency Medicine
Director of Emergency Ultrasound
Department of Emergency Medicine
University of California Irvine Medical Center
Orange, CA, USA

Katja Goldflam, MD
Assistant Residency Director
Director, Emergency Ultrasound Education
Yale School of Medicine
New Haven, CT, USA
Beatrice Hoffmann, MD PhD RDMS
Emergency Ultrasound and Fellowship Director
Department of Emergency Medicine
Beth Israel Deaconess Medical Center
Harvard Medical School
Boston, MA, USA

Jamie A. Jenkins, MD RDMS FAAEM
Regional Emergency Ultrasound Director, FHS/Team Health
Division of Emergency Medicine
St. Joseph Medical Center
Tacoma, WA, USA

David Kessler, MD MSc RDMS FAAP
Director of Clinical Operations
Director of Pediatric Emergency Ultrasound
Division of Pediatric Emergency Medicine
New York Presbyterian Morgan Stanley Children’s Hospital of New York
Assistant Professor of Pediatrics
Columbia University Medical Center
New York, NY, USA

Heidi Ladner, MD
Associate Chief
University of California Davis Medical Center
Kaiser Permanente, Vacaville,
Vacaville, CA, USA

Samuel H. F. Lam, MD RDMS FACEP
Assistant Ultrasound Director
Department of Emergency Medicine
Advocate Christ Medical Center/Advocate Children’s Hospital
Oak Lawn, IL, USA
Clinical Assistant Professor of Emergency Medicine
University of Illinois at Chicago
Chicago, IL, USA

Jason A. Levy, MD RDMS FAAP FACEP
Director of Emergency Ultrasound
Fellowship Director, Pediatric Emergency Ultrasound
Division of Emergency Medicine
Boston Children’s Hospital
Assistant Professor in Pediatrics
Harvard Medical School
Boston, MA, USA

Resa E. Lewiss, MD RDMS
Director of Emergency Ultrasound
Department of Emergency Medicine
St. Luke’s-Roosevelt Hospital Center
New York, NY, USA

Andrew S. Liteplo, MD RDMS FACEP
Emergency Ultrasound Fellowship Director
Department of Emergency Medicine
Massachusetts General Hospital
Assistant Professor
Harvard Medical School
Boston, MA, USA

Jennifer R. Marin, MD MSc
Director of Pediatric Emergency Ultrasound
Division of Emergency Medicine
Children’s Hospital of Pittsburgh
Assistant Professor of Pediatrics and Emergency Medicine
University of Pittsburgh School of Medicine
Pittsburgh, PA, USA

Arun Nagdev, MD
Director, Emergency Ultrasound
Alameda County Medical Center
Highland General Hospital
Oakland, CA, USA
Assistant Clinical Professor
University of California San Francisco
School of Medicine
San Francisco, CA, USA

Vicki E. Noble, MD
Director, Division of Emergency Ultrasound
Massachusetts General Hospital
Associate Professor
Harvard Medical School
Boston, MA, USA

Daniela Ramirez-Schrempp, MD
Director of Pediatric Emergency Ultrasound
Division of Pediatric Emergency Medicine
Boston Medical Center
Assistant Professor
Boston University
Boston, MA, USA

Joshua Rempell, MD
Division of Emergency Medicine
Brigham and Women’s Hospital
Boston, MA, USA

Randall T. Rhyne, MD, RDMS
Director of Emergency Ultrasound
Carolina’s Medical Center – University
Charlotte, NC, USA

Antonio Riera, MD FAAP
Director, Pediatric Emergency Medicine Ultrasound Curriculum
Section of Emergency Medicine
Assistant Professor of Pediatrics
Yale University School of Medicine
New Haven, CT, USA

Dana R. Sajed, MD FAAEM
Division of Emergency Medicine
University of Washington School of Medicine
Seattle, WA, USA

Fernando Silva, MD MSc
Department of Emergency Medicine
Kaiser Permanente Northern California
Napa/Solano, CA, USA
<table>
<thead>
<tr>
<th>List of contributors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adam B. Sivitz, MD</td>
</tr>
<tr>
<td>Medical Director, Pediatric Emergency Medicine</td>
</tr>
<tr>
<td>Newark Beth Israel Medical Center</td>
</tr>
<tr>
<td>Children's Hospital of New Jersey</td>
</tr>
<tr>
<td>Clinical Assistant Professor of Emergency Medicine</td>
</tr>
<tr>
<td>New Jersey Medical School</td>
</tr>
<tr>
<td>University of Medicine and Dentistry of New Jersey</td>
</tr>
<tr>
<td>Newark, NJ, USA</td>
</tr>
<tr>
<td>Dave Spear, MD</td>
</tr>
<tr>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Department of Surgery</td>
</tr>
<tr>
<td>University of Texas Southwestern Medical Center</td>
</tr>
<tr>
<td>Dallas, TX, USA</td>
</tr>
<tr>
<td>Rebecca L. Vieira, MD RDMS FAAP</td>
</tr>
<tr>
<td>Associate Director of Emergency Ultrasound</td>
</tr>
<tr>
<td>Division of Emergency Medicine</td>
</tr>
<tr>
<td>Boston Children's Hospital</td>
</tr>
<tr>
<td>Instructor in Pediatrics</td>
</tr>
<tr>
<td>Harvard Medical School</td>
</tr>
<tr>
<td>Boston, MA, USA</td>
</tr>
</tbody>
</table>