Index

kBT physics, 12, 17
abortive infection, 247
activation
 regulatory dynamics, 42
activator, 209
 adaptation, 216
 Barkei–Leibler model, 218
 buffer, 217
 E. coli chemotaxis, 218
 RNA as a buffer, 43
ageing, 34
 of information, 228
 species does not get old, 281
agent-based model, 226
 co-evolution, 289
 communication and social climbing, 233
 diversity with competition, 273
excitable media, 226
 information hierarchy, 232
 nucleosome-mediated epigenetics, 127, 128
 rock–paper–scissors, 238
 Schelling model, 230
 segregation, 231
 self-organized criticality, 289
 social climbing, 233
 social hierarchies, 233
 social segregation, 233
 tragedy of the commons, 238
 word spreading, 229
α-helix, 36
amino acid, 20, 21
 hydrophobicity, 20
 mass, 17
 size, 20
anti-immune state
 Cro domination, 111
anti-terminator
 N, 53
 Q, 54
ATP, 10
avalanches
 co-extinctions, 292
inside avalanche, 292
 of avalanches, 292
bacteria, see prokaryotes, 259
bacterial immunity, 246
 to phage is local, 261, 263
 bet-hedging, 7, 9
 fitness loss for virulent mutant, 271
 temperate phages, 268, 269, 278
binding energies, 59, 64
binding energy
 entropy battle, 14, 70, 74, 76
 bistability, 129
 ecosystem model, 276
cis, 124, 144
 phage λ switch, 111
Boltzmann weight, 14, 63, 298
CAP, see also CRP, 37
cell growth, 2
 morphological instability, 173
 Verhulst equation, 253
cell individuality, 9, 95, 127
central dogma, 4
 with protein feedback, 37
 with RNA feedback, 44
chaos from deterministic equations, 174
chemical binding
 1 M~ 1 nm^{-3}, 59
 counting exercise, 59
chemotaxis
 random walk, 221
CI, 121
 binding energies, 64
 Cro, 52
degradation and RecA activation, 54
 immunity, superinfection, 51
 positive feedback, 65, 66
 repressor of Cro, 51
tetramerization, 53
CII, 53
 allows for counting, 121
degradation rate, 51
infection trajectory, 117
predicted infection trajectory, 120
cis
A in phage φX174, 123
A in phage P2, 123
epigenetics in, 124, 143
Q in phage λ, 124
regulation in, 124
clear plaques, 57
clonal selection, 239
colony as a unit in ABM, 262
mediocre killer phages, 240
closed complex, 25
clr4, a read–write enzyme, 126
coevolution
avalanches, 292
Bak–Sneppen model, 289
help barrier passing, 294
phage λ uses HflB in E. coli, 51
phage λ uses RecA in E. coli, 52
phages and bacteria, 245, 248
punctuated equilibrium, 292
separated timescales, 292
transitions in geology, 294
codons, 4, 17
mass, 17
coefficient of variation (see CV), 95
colisins, 231, 236
combined umbrella motifs, 166
communication, 7
signaling across tissue, 226
social climbing, 233
social coherence, 230, 234
social hierarchies, 233
social segregation, 233
complementary base pairs, 5, 18
computation
E. coli, 6
λ phage count to two, 118
somite segmentation count to 31, 122
spinal cord count to three, 122
consensus sequence
OR and OL in λ, 53
promoters, 25
Shine–Delgarno, 29
contingencies
macro-evolution, 4, 288
phage λ as a model organism, 49
co-operativity
dimerization, 38, 39
Hill coefficient, 40
needed for epigenetics, 130, 159
recruitment as a two-step process, 131
copying, 1, 2, 3
counting to three, 12
counting to two, 118
coupled feedbacks, 142
covalent bond
binding energy, 13
keeping DNA together, 18
protein backbone, 20
RNA backbone, 20
separation of energy scales, 6
CpG islands, 149
CRISPR
bacterial immunity, 246
ecosystem model, 261
gain and loss of immunity, 262
Cro
anti-immune state, 111, 112
binding energies, 64
in early decision, 121
properties, 51
stochastic production in lysogen, 108
CRP, 37
hub regulator, see also CAP, 208
in galactose network, 151
CV, coefficient of variation, 95
CI in λ lysogen, 113
of species lifetimes, 281
plasmid copy numbers, 95
cycles, 11, 235
→ patchiness, 276
ecosystems, 273
positive feedback, 277
species diversity, 277
dalton, 17
Darwin, 2, 279
developmental decisions
counting to three, 122
somite segmentation, 122
stem cells, 161
temperate phages, 51
diffusion, 82
across an E. coli cell, 83
constant and mobility, 80
constant and random walks, 81
constant in cytoplasm, 80
equation, 82
inside eukaryotes, 80
limited on rate, 85
time to locate a binding site, 84
time to locate a binding site in cell, 83
diffusion constant, 79
diffusion equation
relation to random walk, 81
solution, 82
solve with absorbing boundary, 84
dimerization, 39
dissipation timescale, 81
dissociation constant, 37
Index

distribution
gene expression, 30

distributions
binomial, 179
exponential, 13, 179
Gaussian, 179
Poisson, 179
power law, 179
scale-free, 185
scale-free, see power law, 179
diversity
biological, sustainability, 272
sustainability, 285

DNA, 5
structure, 17
backbone, 18
base pairing, 18
base pairs, 18
binding energy, 18
double helix, 19
major groove, 19
information, 19
minor groove, 19
persistence length, 18
DNA looping
gene regulation, 71
in nucleosome-mediated epigenetics, 128, 139
DNA methylation, 246
DNA trafficking, 90
DNAP, 90

E. coli, 6
content, 22, 23, 32
limits on growth, 33
network
modular, 207
network degree distribution, 207
reaction network, 207
ribosome fraction, 33
variations in growth, 34

E. coli chemotaxis, 218
ecosystems
cyclic relationships, 273
diversity or exponential growth, 272
keystone species, 272
elongation initiation, 26
enzyme kinetics, 212
epigenetic landscapes
coupled, 145
regulated, 137
epigenetic states
dynamics of, 133
recruitments per generation, 133
epigenetics
bistability, 129
co-operativity, 131, 136

DNA methylation, 149
in S. cerevisiae, 124, 147
Kramers escape formalism, 115
λ phage, 50
need non-local recruitment, 132
nucleosome-mediated, 124, 128
three-state model, 128
two-state model, 135, 136
Pombe, 127
positive feedback, 52, 128
production and decay, 114
stable and unstable fixed points, 114
toolkit, 139

epigenetics states
phage λ, 111
escape over a barrier, 297

Eukaryotes
macro-evolution, 280, 281

Eukaryotes
cell size, 123
inflammation response in mammals, 170
multicellular differentiation, 122, 161
nucleosomes and gene regulation, 123
S. cerevisiae, 151
stem cells, 161

event-based simulation
see Gillespie algorithm, 106

Evolution
adaptive walks, 283
coevolution, 293
extinction avalanches, 293
extinction by asteroid impacts, 287
fitness, 282, 283
macro-scale, 280
neutral, 282
Red Queen hypothesis, 281
separated timescales, 288, 293
timescales, 280
evolvability
co-evolutionary avalanches, 294
evolving in itself, 279, 283
transposons, 3

excitable media, 168
agent-based model, 226
forest fire, 171
inflammation, 171
exponential distribution
waiting time distribution, 96
extinctions on geological scales, 287

F plasmid, 249
facilitated target location, 86
Fano factor, 96
feedback
toolkit, 139
examples, 151–153
excitable media, 168
homeostasis, 154

local inhibition, 173
mixed, 154, 162
negative, 7, 153
oscillations, 155
time delay, 157
negative, stress response, 155
pattern formation, 172
positive, 126, 142, 159
enzymatic, 160
mixed, 160
switch, 159, 160
transcriptional, 160
positive global, negative local, 168
positive local, negative global, 142, 172
time delay, 157
transcription and small molecules, 154, 162
wave propagation, 170
first return of random walks, 292, 299
fitness
hill climbing, 282
landscape with barriers, 283
landscapes, 283
landscapes, Fisher theory, 284
landscapes, S. Wright, 282
limitations, 277, 285
loss of virulent mutant, 271
neutral landscapes, 283
variable environment, 268
fitness landscapes
barriers, 288
interacting landscapes, 289
neutral, 282
fixed points, 130
fluctuation–dissipation theorem, 80, 296
flux
balance, 221, 223
metabolites, 162
Fokker–Planck equation, 296, 297
forest fire
excitable medium, 171
with fire that needs to be extinguished, 236
fractal globule, 140
absolute scale, 75
distance dependent contacts, 74, 140
E. coli chromosome, 75
GAIA, 1, 280, 281
gambler’s ruin, 292
gene expression, 5, 8, 10, 152, 179
distribution, 30
stochastic, 9, 121
gene regulation
DNA loop, 71
indirect, 138
logic gates, 209
nucleosome mediated, 138
genetic code, 17
genetic switch, 52
λ phage, 49
Pombe, 127
geneology and biological history, 280, 294
GFP
cell variations of S. pombe, 127
expression from plasmids, 95
noise in λ phage lysogen, 113
Gillespie algorithm
coarse-grained, 108
event-based simulation, 106
proteins from one mRNA, 108
globular protein, 21
GO-annotation of proteins, 197
GTP, 10
Hill coefficient, 40
history
contingencies in macro-evolution, 4
geological record, 294
separation of timescales, 2
hydrogen bond
binding energy, 17
hydrogen bonds
base-pair matching, 18
between DNA strands, 5
binding energy, 13
protein structure, 17
weak binding perpendicular to backbone, 6
inflammation
agent-based models, 226
excitable media, 171, 226
information, 7
value and age, 228
waves, 227
isomerization, 26
J-factor, 73
entropy cost, 76
free energy, 73
kcal mol$^{-1}$, 17
keystone species, 272
Kramers’ equation, 297
Kuhn length, 74
Kuramoto–Sivashinsky equation, 174
λ
RexA and RexB, 247
λ phage, 49
anti-immune state, 109
CI, 54, 64, 109, 121
CII, 53, 121
counting, 56
Cro, 64, 109, 121
epigenetics, 49
λ phage (cont.)
 induction by CI degradation, 52
 induction by RecA, 52
 induction by UV, 52, 55
 mutation to become virulent, 58
N, 121
OL, 71
OL–OR looping, 71
OR, 52
OR affinities, 64
PR, 66, 109
PRM, 66, 109
receptor, 50
 spontaneous induction, 56, 109
 spontaneous induction, barriers, 114
 stability of lysogen, 109
 switch, 52, 111
Langevin equation, 135, 296
lichen, 273
links in regulatory networks, 42
logic gates in gene regulation, 209
Lon, 29
loop entropy
 fractal globule, 76
 random coil, 74
lysis, 50
lysogen, 50
lysogenic state, 50
lysogeny, 50
macro-evolution
 co-existence matrix, 280
 steady state, 290
 transitions in geology, 294
metabolic
 flux balance, 219
 flux balance equation, 222
 flux = 1/recycling time, 24
 recycling time, 24
 stochiometry matrix, 221
metabolic flux, 219
metabolite
 flux, 162
 metabolites, see small molecules, 162
Michaelis–Menten reaction, 212
mixed feedback, 47, 142
mobility, 80
modularity, 9
Monod growth law, 32, 35
morphological instability and tip-splitting dynamics, 175
motif
 networks, 195
mRNA
 lifetimes in E.coli, 29, 31
 translation rates, 34
 translation speed, 30
N, an anti-terminator protein, 53
 role in timing CII and CIII, 121
 network
 locality, 9
 modularity, 9
 scaling of regulation, 7
network motif
 adaptation, 216
 network motifs, 162
 adaptation, 43
 collector, 165
 combined and mixed feedback, 164
 combining motifs, 166
 consumer, 165
 fashion, 165
 feed-forward, 195
 feedback with small molecules, 162
 socialist, 165
 umbrella motifs, 164
networks
 alignment, 177, 196
 amplification factor, 181
 Boolean, 177
 correlation profile, 194
 degree distribution, 179, 184, 207
 diameter, 181
 distance between nodes, 181
 ecosystem of phage and bacteria, 251
 enzyme kinetics, 212
 evolution by duplication and rewiring, 201
 evolution of molecular ones, 200
 evolution using a toolbox, 201
 heterogenous elements, 178
 history, 179
 limits on signaling, 179
 motif, feed-forward, 195
 one hub, one function considerations, 197
 preferential attachment, 234
 proper null models, 193
 protein–protein sequestration, 210
 randomization, 193
 reaction node, 206
 scale-free, 185
 separated timescales, 179
 signaling, 177, 179, 206, 211
 signaling cascades, 212, 215
 strong component, 207, 208
 threshold, 198
 toolbox model, 202
 transcription + protein:protein, 207
non-equilibrium, 10
non-specific interactions, 68
 buffering, 69
 co-operative, 70
nucleosome
 binding energy, 125
modifications, 126
recruitment, 126
recruitment games, 147
size, 125
states, 126
toolkit for epigenetics, 139
nucleosome systems
toolkit, 139
oc44, sox2, nanog, 125
off rates, 86
olfactoric differentiation, 142
on rates
diffusion-limited, 85
facilitated, 88
one molecule per E. coli equals 1.6 nM, 25
operator, 37
acting at a distance, 71
operator bindings in phage lambda, 64
operator right (OR) in phage lambda, 53, 64
operon, 100, 201
minimization of relative noise, 102
polyclmonic, 100
oscillations, 155
palindrome, 53
partition function
chemical binding, 60
method, 63
patchiness allows diversity, 276
pattern formation, 172
PCR, 12
persistence length, 74
phage
against phage, 250
and bacteria in oceans, 256
bacteria co-evolution, 248
bacteria dimensionless equations, 254
bacteria network, 251
burst sizes, 254
distribution, 245
capsid masses, 254
choosing lysogeny frequency, 270
co-transferred protein groups, 244
death rates, 254
F plasmid as a benign phage, 249
family tree, 243
filamentous, 243
genome sizes, 254
groups, 244
in oceans, 256
infection rates, 254
latency times, 254
numbers in world, 242
P2, 250
partially resistant hosts, 259
predator–prey, 254
resistant hosts, 257
susceptible and resistant hosts, 258
temperate, 242
temperate loss by going virulent, 271
temperate state as a hedging option, 268
temperate versus virulence, 270
temperate, hedging, 267
temperate, playing dice is good, 267
virulence number, 256
virulent, 244
phage defense systems
abortive infection, 247
CRISPR, 246
loss of receptors, 249, 259
restriction modification, 246
toxin–anti-toxin, 247
phage–bacteria systems may be eliminated in
transients, 255
pitchfork bifurcation, 130
PL promoter, 52, 54
plaque, 56, 57
plasmids, 249
as benign phages, 270
cell to cell variations, 95
plating, 56, 57
Poission distribution, 96
polyclmonic operon
coccurring gene transfer, 100
noise minimization, 100, 121
polycomb, 125
polymerase chain reaction, 12
polymers, 6
positive feedback
bistability, 52
cycles, 277
PR activity, 66, 69, 72
PR promoter, 53, 54
PR promoter, 54
PRE promoter, 53, 54
predator–prey as phage–bacteria, 254
preferential attachment
cumulative advantage, rich gets richer, 234
PRM activity, 66, 69, 72
PRM promoter, 53, 54
probability for complex operator occupancies, 63
production and decay of a protein, 104
prokaryotes
E. coli content, 23
E. coli growth rate, 32
cocexistence with phages, 251, 256, 257, 259, 263
numbers on Earth, 49, 242
promoter, 37
interference, 90
interference equation, 92
open complex, 26
Index

proteases, 21
CaspX, 151
HflB, 8, 51, 155
Lon, 29
proteasome in eukaryotes, 158
regulatory dynamics, 42
protein, 20
structure, 21
protein–protein binding, 20
stability, 20
volume, 23
protein–protein sequestration, 210
protein–protein
nearest and next-nearest binding, 211
switch in phage TP901-1, 160
UmuD:UmuD′ and UmuD:UmuC in SOS, 151
protein–protein binding
gene regulation, 47
punctuated equilibrium, 280, 281, 287
push–pull, 8, 212
Q, an anti-terminator protein, 54
random walk
biased, 221
diffusion, 81
time to locate a binding site, 84
read–write enzymes, 126
barriers, 140
distance dependence, 140
limited supply, 140
limited supply, limited spreading, 140
local–global, 139
silencers, 140
RecA
λ phage induction, 52
minus have small λ phage release, 111
SOS, 151
RecA and RexB, 54
recruitment
asymmetric, 137
distance dependence, 140
limits by barriers, 140
limits by number of read–write complexes, 140
local, 132
local and global, 139
of RNAP by CI in phage lambda, 65, 66
recruitment model, 128
Red Queen, 9, 281
Redfield ratio, 35
regulation
cis, 124
tans, 124
regulation by sequestration, 47, 211
regulatory dynamics
activated reservoir, 43
activation, 42
degradation, 42
post-transcriptional, 42, 43
repression, 42
self-repression, 43
regulon, 201
repressilator, 157
with breaks, 122
repressor, 37, 209
restriction modification, 246
bacteria may compete using phages, 251
RexA and RexB, 247
ribosomes
content, 28
degradation and recycling, 29
mass, 28
numbers in E. coli, 33
RNA
backbone, 19
dertility, 20
structure, 19
RNAP, 24–26
binding energies, 64
collisions, 91
numbers in E. coli, 25
robustness
λ decision circuit, 121
and taxonomic diversity, 285
rock–paper–scissors
phage–bacteria–food, 253
phage-susceptible, resistant hosts, 259
tragedy of the commons, 236
scale-free
gene expression, 30
network degree distribution, 185
self-organized criticality, 292, 293
species extinctions, 287, 292
taxonomic orders, 280
Schelling model, 230
segregation, 231
self-assembly, 3
copying, 3
phage release, 50
self-organization, 3
self-organized criticality, 289, 292
self-repression, 43
separated energy scales
polymers, 6
separated timescales, 2
evolution, 288, 293
networks, 179
social networks rewire slower than communication, 233
separation of energy scales
polymers, 17
Shea–Ackers formalism, 63
Shine–Delgarno, 29
signaling
across networks, 54, 206, 207, 211, 212
across tissue, 226
protein–protein networks, 211
Sir2, a read–write enzyme, 126, 147
small molecules
Fe uptake in *E. coli*, 151
galactose uptake in *E. coli*, 151
turnover rate, 163
umbrella motifs, 164
small RNA
regulation, 44
RyhB, 45
RyhB in *E. coli*, 151
Spot42, 45
Spot42 in *E. coli*, 151
social network rewiring dynamics, 233
species extinctions
and originations, 280
correlated, 4
random, 281
scale-free, 287
tRNA, see small RNA, 44
stable fixed point, 104
steady-state
macro-evolution, 290
stochastic behavior, 9
bursty transcription initiation, 94
deterministic equations, 174
from single molecule fluctuations, 107
plasmid copy number, 95
stochastic gene expression
Gillespie algorithm, 106
simulation with discrete timesteps, 104
stress response
heat shock, 8
negative feedback, 155
oscillations, 155
success: sustainability or proliferation, 285
supercoiling
distance-dependent contacts, 77, 140
mediated promoter burstiness, 99
promoter sensitivity, 98
transcription induced, 92
sustainability
limits on evolvability, 9, 281
or success on shorter timescale, 285
taxonomy that is scale free, 280
taxonomic diversity is not helping sustainability, 285
temperate phages, 50
characteristics, 254
developmental decision, 51
genetic switch, 52
leaving the bacteria, 52
relation to virulent phages, 244
time delay
cellular mechanisms, 157
oscillations, 157
timescales
existence times of genera, 281
existence times of orders, 285
geological, 280, 294
phage infections and death, 254
recruitment activity among nucleosomes, 133
replication, adaptation, punctuation, 288
time to leave a binding site, 86
time to locate a binding site in cell, 83
toolbox model, 202
toxin–anti-toxin, 247
tragedy of the commons, 235
clonal selection, 239
limits on virulence, 240
trans-regulation with diffusible factors, 124
transcription, 25
bursty initiation, 94
initiation, 26
initiation, with interference, 90
three-step initiation model, 27
two-step initiation model, 90
transcription factor
activator, 37
coopervative operator binding, 41
coopativity, 38
numbers in prokaryotes, 193
operator binding, 37, 41
repressor, 37
transcription regulation, 37
combinatorial, 209
networks, 190
transcription–translation, 24, 30
transcriptional activator, 41
transcriptional bursting
RNAP recruits RNAP, 99
slow transcription factors, 98
transcriptional repressor, 41
translation, 28
speed, 30, 33
speed differences between codons, 18, 30
speed with growth rate, 34
traffic, 30
tRNA, 20
turbid plaques, 57
umbrella motifs, 164
variance
equal sum of variances for sub-processes, 113
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>variance (cont.)</td>
</tr>
<tr>
<td>Fano factor multiplied by mean, 96</td>
</tr>
<tr>
<td>predator–prey model, 253</td>
</tr>
<tr>
<td>Verhulst equation, 253</td>
</tr>
<tr>
<td>wave propagation, 170</td>
</tr>
<tr>
<td>virulent phages</td>
</tr>
<tr>
<td>burst size distribution, 245</td>
</tr>
<tr>
<td>relation to temperate phages, 244</td>
</tr>
<tr>
<td>characteristics, 254</td>
</tr>
<tr>
<td>yeast</td>
</tr>
<tr>
<td>co-existence with host, 256, 257</td>
</tr>
<tr>
<td>colony growth, 173</td>
</tr>
<tr>
<td>examples, 243</td>
</tr>
<tr>
<td>limits on virulence, 240</td>
</tr>
<tr>
<td>Z score</td>
</tr>
<tr>
<td>networks, 194</td>
</tr>
</tbody>
</table>