Python for Scientists

Python is a free, open source, easy-to-use software tool that offers a significant alternative to proprietary packages such as Matlab and Mathematica. This book covers everything the working scientist needs to know to start using Python effectively.

The author explains scientific Python from scratch, showing how easy it is to implement and test non-trivial mathematical algorithms and guiding the reader through the many freely available add-on modules. A range of examples, relevant to many different fields, illustrate the program's capabilities. In particular, readers are shown how to use pre-existing legacy code (usually in Fortran77) within the Python environment, thus avoiding the need to master the original code.

Instead of exercises the book contains useful snippets of tested code which the reader can adapt to handle problems in their own field, allowing students and researchers with little computer expertise to get up and running as soon as possible.

Python for Scientists

JOHN M. STEWART

Department of Applied Mathematics & Theoretical Physics University of Cambridge

 $\textcircled{\sc c}$ in this web service Cambridge University Press

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107061392

© John M. Stewart 2014

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2014 Reprinted 2015

Printed in the United Kingdom by Clays, St Ives plc

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data

Stewart, John, 1943 July 1–
Python for scientists / John M. Stewart. pages cm
Includes bibliographical references and index.
ISBN 978-1-107-06139-2 (hardback)
1. Science – Data processing. 2. Python (Computer program language) I. Title.
Q183.9.S865 2014
005.13'3 – dc23 2014010571

ISBN 978-1-107-06139-2 Hardback ISBN 978-1-107-68642-7 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Preface

page	X1
1 0	

1	Intro	Introduction				
	1.1	Scientific software	1			
	1.2	The plan of this book	4			
	1.3	Can Python compete with compiled languages?	8			
	1.4	Limitations of this book	9			
	1.5	Installing Python and add-ons	9			
2	Gett	ting started with IPython	11			
	2.1	Generalities	11			
	2.2	Tab completion	12			
	2.3	Introspection	12			
	2.4	History	13			
	2.5	Magic commands	14			
	2.6	The magic %run command	15			
3	A sh	nort Python tutorial	20			
	3.1	Typing Python	20			
	3.2	Objects and identifiers	21			
	3.3	Numbers	23			
		3.3.1 Integers	23			
		3.3.2 Real numbers	23			
		3.3.3 Boolean numbers	24			
		3.3.4 Complex numbers	25			
	3.4	Namespaces and modules				
	3.5	Container objects	27			
		3.5.1 <i>Lists</i>	27			
		3.5.2 <i>List</i> indexing	28			
		3.5.3 List slicing	28			
		3.5.4 <i>List</i> mutability	30			
		3.5.5 <i>Tuples</i>	31			
		3.5.6 Strings	31			
		3.5.7 Dictionaries	32			

 $\textcircled{\sc c}$ in this web service Cambridge University Press

4

vi	Contents	

33 34 35 35 36 37 37 38 41 41 41 41 42 42 42 44
34 35 36 37 37 38 41 41 41 42 42 42 44
35 35 36 37 37 38 41 41 41 41 42 42 42 44
35 36 37 37 38 41 41 41 42 42 42 44
36 37 38 41 41 41 42 42 42 42 44
37 37 38 41 41 41 42 42 42 44
37 38 41 41 41 42 42 42 44
38 41 41 41 42 42 42 44
41 41 42 42 44 45
41 41 42 42 44 45
41 42 42 44
42 42 44
42 44 45
44
15
45
47
48
52
54
54
55
56
58
59
62
63
64
65
66
66
67
67
69
69
70
70
71
71
71
71
72
72 72

			C	ontents	vii
		4.7.1	Converting data to coefficients		73
		4.7.2	Converting coefficients to data		73
		4.7.3	Manipulating polynomials in coefficient form		74
	4.8	Linear	algebra		74
		4.8.1	Basic operations on matrices		74
		4.8.2	More specialized operations on matrices		15
	4.0	4.8.3 More #	Solving linear systems of equations		15
	4.9		Scipy		70
		4.9.1	Scikits		70
5	Two-	dimens	ional graphics		79
	5.1	Introdu	iction		79
	5.2	Getting	g started: simple figures		80
		5.2.1	Front-ends		80
		5.2.2	Back-ends		80
		5.2.3	A simple figure		81
		5.2.4	Interactive controls		82
	5.3		83		
		5.3.1	The <i>matplotlib</i> plot function		83
		5.3.2	Curve styles		83
		5.5.5 5.3.4	Avec grid labels and title		04 85
		535	A not-so-simple example: partial sums of Fourier s	series	86
	54	Polar n	slots		87
	5.5	Error b	bars		88
	5.6	Text an	nd annotations		89
	5.7	Display		90	
		5.7.1	Non-LATEX users		90
		5.7.2	LATEX users		91
		5.7.3	Alternatives for LATEX users		92
	5.8	Contou	ur plots		92
	5.9	Compo	ound figures		95
		5.9.1	Multiple figures		95
	5 10	5.9.2	Multiple plots		96
	5.10	Anima	tions		98
		5.10.1	In situ animations Movies		100
	5.11	Mande	lbrot sets: a worked example		100
6	Three-dimensional graphics				107
	6.1 Introduction				107
		6.1.1	Three-dimensional data sets		107
		6.1.2	The reduction to two dimensions		108

viii

Cambridge University Press 978-1-107-06139-2 - Python for Scientists John M. Stewart Frontmatter <u>More information</u>

Contents

	6.2	Visualization software	109				
	6.3	A three-dimensional curve	110				
		6.3.1 Visualizing the curve with <i>mplot3d</i>	111				
		6.3.2 Visualizing the curve with <i>mlab</i>	112				
	6.4	A simple surface	114				
		6.4.1 Visualizing the simple surface with <i>mplot3d</i>	114				
		6.4.2 Visualizing the simple surface with <i>mlab</i>	116				
	6.5	A parametrically defined surface	117				
		6.5.1 Visualizing Enneper's surface using <i>mplot3d</i>	117				
		6.5.2 Visualizing Enneper's surface using <i>mlab</i>	119				
	6.6	Three-dimensional visualization of a Julia set	120				
7	Ordi	Ordinary differential equations					
	7.1	Initial value problems	122				
	7.2	Basic concepts	122				
	7.3	The odeint function	125				
		7.3.1 Theoretical background	125				
		7.3.2 Practical usage	127				
	7.4	Two-point boundary value problems	132				
		7.4.1 Introduction	132				
		7.4.2 Formulation of the boundary value problem	133				
		7.4.3 A simple example	135				
		7.4.4 A linear eigenvalue problem	136				
		7.4.5 A non-linear boundary value problem	138				
	7.5	Delay differential equations	142				
		7.5.1 A model equation	143				
		7.5.2 More general equations and their numerical solution	144				
		7.5.3 The logistic equation	145				
		7.5.4 The Mackey–Glass equation	147				
	7.6	Stochastic differential equations	150				
		7.6.1 The Wiener process	150				
		7.6.2 The Itô calculus	152				
		7.6.3 Itô and Stratanovich stochastic integrals	155				
		7.6.4 Numerical solution of stochastic differential equations	156				
8	Part	Partial differential equations: a pseudospectral approach					
	8.1	Initial-boundary value problems					
	8.2	Method of lines					
	8.3	Spatial derivatives via finite differencing					
	8.4	Spatial derivatives by spectral techniques for periodic problems					
	8.5	The IVP for spatially periodic problems	167				
	8.6	Spectral techniques for non-periodic problems					
	8.7	An introduction to f2py	172				
		8.7.1 Simple examples with scalar arguments	172				

				Contents	ix
		8.7.2	Vector arguments		174
		8.7.3	A simple example with multi-dimensional argume	ents	175
		8.7.4	Undiscussed features of f2py		176
	8.8	A real-	life £2py example		177
	8.9	Worke	d example: Burgers' equation		178
		8.9.1	Boundary conditions: the traditional approach		179
		8.9.2	Boundary conditions: the penalty approach		179
9	Case	se study: multigrid			
	9.1	The on	e-dimensional case		185
		9.1.1	Linear elliptic equations		185
		9.1.2	Smooth and rough modes		186
	9.2	The too	ols of multigrid		186
		9.2.1	Relaxation methods		186
		9.2.2	Residual and error		189
		9.2.3	Prolongation and restriction		190
	9.3	Multig	rid schemes		191
		9.3.1	The two-grid algorithm		192
		9.3.2	The V-cycle scheme		193
		9.3.3	The full multigrid scheme (FMG)		194
	9.4	A simp	ble Python multigrid implementation		195
		9.4.1	Utility functions		196
		9.4.2	Smoothing functions		197
		9.4.3	Multigrid functions		199
Appendi	хA	Installin	ng a Python environment		205
	A.1	Installi	ng Python packages		205
	A.2	Comm	unicating with Python		206
		A.2.1	Editors for programming		206
		A.2.2	The IPython-editor interaction		207
		A.2.3	The two windows approach		207
		A.2.4	Calling the editor from within IPython		208
		A.2.5	Calling IPython from within the editor		208
		A.2.6	The <i>IPython</i> pager		208
	A.3	The Py	thon Package Index		209
Appendi	хB	Fortran	77 subroutines for pseudospectral methods		210
	Refe	rences			216
	Index	x			218

Preface

I have used computers as an aid to scientific research for over 40 years. During that time, hardware has become cheap, fast and powerful. However, software relevant to the working scientist has become progressively more complicated. My favourite textbooks on Fortran90 and C++ run to 1200 and 1600 pages respectively. And then we need documentation on mathematics libraries and graphics packages. A newcomer going down this route is going to have to invest significant amounts of time and energy in order to write useful programmes. This has led to the emergence of "scientific packages" such as Matlab or Mathematica which avoid the complications of compiled languages, separate mathematics libraries and graphics packages. I have used them and found them very convenient for executing the tasks envisaged by their developers. However, I also found them very difficult to extend beyond these boundaries, and so I looked for alternative approaches.

Some years ago, a computer science colleague suggested that I should take a look at Python. At that time, it was clear that Python had great potential but a very flaky implementation. It was however free and open-source, and was attracting what has turned out to be a very effective army of developers. More recently, their efforts have coordinated to produce a formidable package consisting of a small core language surrounded by a wealth of add-on libraries or *modules*. A select group of these can and do replicate the facilities of the conventional scientific packages. More importantly an informed, intelligent user of Python and its modules can carry out major projects usually entrusted to dedicated programmers using Fortran, C etc. There is a marginal loss of execution speed, but this is more than compensated for by the vastly telescoped development time. The purpose of this book is to explain to working scientists the utility of this relatively unknown resource.

Most scientists will have some computer familiarity and programming awareness, although not necessarily with Python and I shall take advantage of this. Therefore, unlike many books which set out to "teach" a language, this one is not just a brisk trot through the reference manuals. Python has many powerful but unfamiliar facets, and these need more explanation than the familiar ones. In particular, if you encounter in this text a reference to the "beginner" or the "unwary", it signifies a point which is not made clear in the documentation, and has caught out this author at least once.

The first six chapters, plus Appendix A, cover almost everything the working scientist needs to know in order to get started in using Python effectively. My editor and some referees suggested that I should devote the second half of the book to problems in

xii Preface

a particular field. This would have led to a series of books, "Python for Biochemists", "Python for Crystallographers",..., all with a common first half. Instead I have chosen to cover just three topics, which however, should be far more widely applicable in many different fields. Chapter 7 covers four radically different types of ordinary differential equations and shows how to use the various relevant black boxes, which are often Python wrappers around tried and trusted Fortran codes. The next chapter while ostensibly about pseudospectral approaches to evolutionary partial differential equations, actually covers a topic of great utility to many scientists, namely how to reuse legacy code, usually written in Fortran77 within Python at Fortran-like speeds, without understanding Fortran. The final chapter about solving very large linear systems via multigrid is also a case history in how to use object-oriented programming meaningfully in a scientific context. If readers look carefully and critically at these later chapters, they should gain the practical expertise to handle problems in their own field.

Acknowledgments are due to the many Python developers who have produced and documented a very useful tool, and also to the very many who have published code snippets on the web, a great aid to the tyro, such as this author. Many of my colleagues have offered valuable advice. Des Higham generously consented to my borrowing his ideas for the last quarter of Chapter 7. I am especially grateful to Oliver Rinne who read carefully and critically an early draft. At Cambridge University Press, my Production Editor, Jennifer Murphy and my Copy Editor, Anne Rix have exhibited their customary expertise. Last but not least I thank the Department of Applied Mathematics and Theoretical Physics, Cambridge for continuing to offer me office space after my retirement, which has facilitated the production of this book.

Writing a serious book is not a trivial task and so I am rather more than deeply grateful for the near-infinite patience of *Mary*, the "Python-widow", which made this book possible!