Contents

<table>
<thead>
<tr>
<th>Preface</th>
<th>page ix</th>
</tr>
</thead>
</table>

PART ONE FOUNDATIONS OF NEURONAL DYNAMICS 1

1 Introduction: neurons and mathematics 3
 1.1 Elements of neuronal systems 3
 1.2 Elements of neuronal dynamics 7
 1.3 Integrate-and-fire models 10
 1.4 Limitations of the leaky integrate-and-fire model 19
 1.5 What can we expect from integrate-and-fire models? 23
 1.6 Summary 25

2 Ion channels and the Hodgkin–Huxley model 28
 2.1 Equilibrium potential 28
 2.2 Hodgkin–Huxley model 31
 2.3 The zoo of ion channels 42
 2.4 Summary 56

3 Dendrites and synapses 58
 3.1 Synapses 58
 3.2 Spatial structure: the dendritic tree 64
 3.3 Spatial structure: axons 72
 3.4 Compartmental models 75
 3.5 Summary 79

4 Dimensionality reduction and phase plane analysis 81
 4.1 Threshold effects 81
 4.2 Reduction to two dimensions 84
 4.3 Phase plane analysis 91
 4.4 Type I and type II neuron models 96
 4.5 Threshold and excitability 103
 4.6 Separation of time scales and reduction to one dimension 108
 4.7 Summary 111
Table of Contents

PART TWO GENERALIZED INTEGRATE-AND-FIRE NEURONS

5 Nonlinear integrate-and-fire models
- 5.1 Thresholds in a nonlinear integrate-and-fire model
- 5.2 Exponential integrate-and-fire model
- 5.3 Quadratic integrate and fire
- 5.4 Summary

6 Adaptation and firing patterns
- 6.1 Adaptive exponential integrate-and-fire
- 6.2 Firing patterns
- 6.3 Biophysical origin of adaptation
- 6.4 Spike Response Model (SRM)
- 6.5 Summary

7 Variability of spike trains and neural codes
- 7.1 Spike-train variability
- 7.2 Mean firing rate
- 7.3 Interval distribution and coefficient of variation
- 7.4 Autocorrelation function and noise spectrum
- 7.5 Renewal statistics
- 7.6 The problem of neural coding
- 7.7 Summary

8 Noisy input models: barrage of spike arrivals
- 8.1 Noise input
- 8.2 Stochastic spike arrival
- 8.3 Subthreshold vs. superthreshold regime
- 8.4 Diffusion limit and Fokker–Planck equation (*)
- 8.5 Summary

9 Noisy output: escape rate and soft threshold
- 9.1 Escape noise
- 9.2 Likelihood of a spike train
- 9.3 Renewal approximation of the Spike Response Model
- 9.4 From noisy inputs to escape noise
- 9.5 Summary

10 Estimating parameters of probabilistic neuron models
- 10.1 Parameter optimization in linear and nonlinear models
- 10.2 Statistical formulation of encoding models
- 10.3 Evaluating goodness-of-fit
- 10.4 Closed-loop stimulus design
- 10.5 Summary

Table of Contents

PART ONE

11 Encoding and decoding with stochastic neuron models

11.1 Encoding models for intracellular recordings 268
11.2 Encoding models in systems neuroscience 273
11.3 Decoding 278
11.4 Summary 285

PART THREE NETWORKS OF NEURONS AND POPULATION ACTIVITY

12 Neuronal populations

12.1 Columnar organization 293
12.2 Identical neurons: a mathematical abstraction 297
12.3 Connectivity schemes 300
12.4 From microscopic to macroscopic 309
12.5 Summary 322

13 Continuity equation and the Fokker–Planck approach

13.1 Continuity equation 326
13.2 Stochastic spike arrival 328
13.3 Fokker–Planck equation 332
13.4 Networks of leaky integrate-and-fire neurons 335
13.5 Networks of nonlinear integrate-and-fire neurons 341
13.6 Neuronal adaptation and synaptic conductance 347
13.7 Summary 353

14 Quasi-renewal theory and the integral-equation approach

14.1 Population activity equations 358
14.2 Recurrent networks and interacting populations 367
14.3 Linear response to time-dependent input 375
14.4 Density equations vs. integral equations 381
14.5 Adaptation in population equations 386
14.6 Heterogeneity and finite size 390
14.7 Summary 392

15 Fast transients and rate models

15.1 How fast are population responses? 397
15.2 Fast transients vs. slow transients in models 399
15.3 Rate models 408
15.4 Summary 414
PART FOUR DYNAMICS OF COGNITION

16 Competing populations and decision making
16.1 Perceptual decision making
16.2 Competition through common inhibition
16.3 Dynamics of decision making
16.4 Alternative decision models
16.5 Human decisions, determinism, and free will
16.6 Summary

17 Memory and attractor dynamics
17.1 Associations and memory
17.2 Hopfield model
17.3 Memory networks with spiking neurons
17.4 Summary

18 Cortical field models for perception
18.1 Spatial continuum model
18.2 Input-driven regime and sensory cortex models
18.3 Bump attractors and spontaneous pattern formation
18.4 Summary

19 Synaptic plasticity and learning
19.1 Hebb rule and experiments
19.2 Models of Hebbian learning
19.3 Unsupervised learning
19.4 Reward-based learning
19.5 Summary

20 Outlook: dynamics in plastic networks
20.1 Reservoir computing
20.2 Oscillations: good or bad?
20.3 Helping patients
20.4 Summary

References

Index