NEURONAL DYNAMICS

What happens in our brain when we make a decision? What triggers a neuron to send out a signal? What is the neural code?

This textbook for advanced undergraduate and beginning graduate students provides a thorough and up-to-date introduction to the fields of computational and theoretical neuroscience. It covers classical topics, including the Hodgkin–Huxley equations and Hopfield model, as well as modern developments in the field such as Generalized Linear Models and decision theory. Concepts are introduced using clear step-by-step explanations suitable for readers with only a basic knowledge of differential equations and probabilities, and richly illustrated by figures and worked-out examples.

End-of-chapter summaries and classroom-tested exercises make the book ideal for courses or for self-study. The authors also give pointers to the literature and an extensive bibliography, which will prove invaluable to readers interested in further study.

WULFRAM GERSTNER is Director of the Laboratory of Computational Neuroscience and a Professor of Life Sciences and Computer Science at the École Polytechnique Fédérale de Lausanne (EPFL) in Switzerland. He studied physics in Tübingen and Munich and holds a PhD from the Technical University of Munich. His research in computational neuroscience concentrates on models of spiking neurons and synaptic plasticity. He teaches computational neuroscience to physicists, computer scientists, mathematicians, and life scientists. He is co-author of *Spiking Neuron Models* (Cambridge University Press, 2002).

WERNER M. KISTLER received a Master's and PhD in physics from the Technical University of Munich. He previously worked as Assistant Professor in Rotterdam for computational neuroscience and he is co-author of *Spiking Neuron Models*. He is now working in Munich as a patent attorney. His scientific contributions are related to spiking neuron models, synaptic plasticity, and network models of the cerebellum and the inferior olive.

RICHARD NAUD holds a PhD in computational neuroscience from the EPFL in Switzerland and a Bachelor's degree in Physics from McGill University, Canada. He has published several scientific articles and book chapters on the dynamics of neurons. He is now a postdoctoral researcher.

LIAM PANINSKI is a Professor in the statistics department at Columbia University and codirector of the Grossman Center for the Statistics of Mind. He is also a member of the Center for Theoretical Neuroscience, the Kavli Institute for Brain Science and the doctoral program in neurobiology and behavior. He holds a PhD in neuroscience from New York University and a Bachelor's from Brown University. His work focuses on neuron models, estimation methods, neural coding and neural decoding. He teaches courses on computational statistics, inference, and statistical analysis of neural data.

NEURONAL DYNAMICS

From Single Neurons to Networks and Models of Cognition

WULFRAM GERSTNER WERNER M. KISTLER RICHARD NAUD LIAM PANINSKI

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107060838

© Cambridge University Press 2014

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

> First published 2014 3rd printing 2015

Printed in the United Kingdom by Clays, St Ives plc.

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication Data

Gerstner, Wulfram.

Neuronal dynamics : from single neurons to networks and models of cognition / Wulfram Gerstner,

Werner M. Kistler, Richard Naud, Liam Paninski.

pages cm

ISBN 978-1-107-06083-8 (Hardback : alk. paper) ISBN 978-1-107-63519-7 (Paperback : alk. paper)

1. Neurobiology. 2. Neural networks (Neurobiology). 3. Cognitive neuroscience.

I. Kistler, Werner M., 1969- II. Naud, Richard. III. Paninski, Liam. IV. Title.

QP363.G474 2014

612.8-dc23 2013047693

ISBN 978-1-107-06083-8 Hardback ISBN 978-1-107-63519-7 Paperback

Additional resources for this publication at www.cambridge.org/gerstner

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Preface

	PAR	T ONE FOUNDATIONS OF NEURONAL DYNAMICS	1
1	Intro	oduction: neurons and mathematics	3
	1.1	Elements of neuronal systems	3
	1.2	Elements of neuronal dynamics	7
	1.3	Integrate-and-fire models	10
	1.4	Limitations of the leaky integrate-and-fire model	19
	1.5	What can we expect from integrate-and-fire models?	23
	1.6	Summary	25
2	Ion c	channels and the Hodgkin–Huxley model	28
	2.1	Equilibrium potential	28
	2.2	Hodgkin–Huxley model	31
	2.3	The zoo of ion channels	42
	2.4	Summary	56
3	Denc	drites and synapses	58
	3.1	Synapses	58
	3.2	Spatial structure: the dendritic tree	64
	3.3	Spatial structure: axons	72
	3.4	Compartmental models	75
	3.5	Summary	79
4	Dime	ensionality reduction and phase plane analysis	81
	4.1	Threshold effects	81
	4.2	Reduction to two dimensions	84
	4.3	Phase plane analysis	91
	4.4	Type I and type II neuron models	96
	4.5	Threshold and excitability	103
	4.6	Separation of time scales and reduction to one dimension	108
	4.7	Summary	111

vi	i Contents				
	PAR	T TWO GENERALIZED INTEGRATE-AND-FIRE NEURONS	115		
5	Nonli	inear integrate-and-fire models	119		
	5.1	Thresholds in a nonlinear integrate-and-fire model	120		
	5.2	Exponential integrate-and-fire model	124		
	5.3	Quadratic integrate and fire	129		
	5.4	Summary	132		
6	Adap	otation and firing patterns	136		
	6.1	Adaptive exponential integrate-and-fire	136		
	6.2	Firing patterns	140		
	6.3	Biophysical origin of adaptation	149		
	6.4	Spike Response Model (SRM)	154		
	6.5	Summary	165		
7	Varia	bility of spike trains and neural codes	168		
	7.1	Spike-train variability	169		
	7.2	Mean firing rate	172		
	7.3	Interval distribution and coefficient of variation	178		
	7.4	Autocorrelation function and noise spectrum	179		
	7.5	Renewal statistics	181		
	7.6	The problem of neural coding	190		
	7.7	Summary	199		
8	Noisy	v input models: barrage of spike arrivals	202		
	8.1	Noise input	202		
	8.2	Stochastic spike arrival	207		
	8.3	Subthreshold vs. superthreshold regime	212		
	8.4	Diffusion limit and Fokker–Planck equation (*)	215		
	8.5	Summary	221		
9	Noisy	v output: escape rate and soft threshold	224		
	9.1	Escape noise	224		
	9.2	Likelihood of a spike train	229		
	9.3	Renewal approximation of the Spike Response Model	232		
	9.4	From noisy inputs to escape noise	235		
	9.5	Summary	241		
10	Estin	nating parameters of probabilistic neuron models	243		
	10.1	Parameter optimization in linear and nonlinear models	244		
	10.2	Statistical formulation of encoding models	249		
	10.3	Evaluating goodness-of-fit	255		
	10.4	Closed-loop stimulus design	263		
	10.5	Summary	264		

Cambridge University Press
978-1-107-06083-8 - Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition
Wulfram Gerstner, Werner M. Kistler, Richard Naud and Liam Paninski
Frontmatter
More information

	Contents	vii
Enco	ding and decoding with stochastic neuron models	267
11.1	Encoding models for intracellular recordings	268
11.2	Encoding models in systems neuroscience	273
11.3	Decoding	278
11.4	Summary	285
PAR	T THREE NETWORKS OF NEURONS AND	
POP	ULATION ACTIVITY	287
Neur	ronal populations	291
12.1	Columnar organization	293
12.2	Identical neurons: a mathematical abstraction	297
12.3	Connectivity schemes	300
12.4	From microscopic to macroscopic	309
12.5	Summary	322
Cont	inuity equation and the Fokker–Planck approach	325
13.1	Continuity equation	326
13.2	Stochastic spike arrival	328
13.3	Fokker–Planck equation	332
13.4	Networks of leaky integrate-and-fire neurons	335
13.5	Networks of nonlinear integrate-and-fire neurons	341
13.6	Neuronal adaptation and synaptic conductance	347
13.7	Summary	353
Quas	si-renewal theory and the integral-equation approach	357
14.1	Population activity equations	358
14.2	Recurrent networks and interacting populations	367
14.3	Linear response to time-dependent input	375
14.4	Density equations vs. integral equations	381
14.5	Adaptation in population equations	386
14.6	Heterogeneity and finite size	390
14.7	Summary	392
Fast	395	
15.1	How fast are population responses?	397
15.2	Fast transients vs. slow transients in models	399
15.3	Rate models	408
15.4	Summary	414
	Enco 11.1 11.2 11.3 11.4 PAR' POP Neur 12.1 12.2 12.3 12.4 12.5 Cont 13.1 13.2 13.3 13.4 13.5 13.6 13.7 Quas 14.1 14.2 14.3 14.4 14.5 14.6 14.7 Fast 15.3 15.4	Denotion and decoding with stochastic neuron models 1.1 Encoding models for intracellular recordings 1.2 Encoding models in systems neuroscience 1.3 Decoding 1.4 Summary DATENTED ENTROPENS OF NEURONS AND DOULATION ACTIVITY DATENTED ENTROPENS OF NEURONS AND DOULATION ACTIVITY DATENTED ENTROPENS of national abstraction 2.3 Columnar organization 2.4 Columnar organization 2.5 Onnectivity schemes 2.4 Forn microscopic to macroscopic 2.5 Summary Dentent equation mathematical abstraction and source cols and sourc

Cambridge University Press
978-1-107-06083-8 - Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition
Wulfram Gerstner, Werner M. Kistler, Richard Naud and Liam Paninski
Frontmatter
More information

viii		Contents			
	PAR	T FOUR DYNAMICS OF COGNITION	417		
16	Com	421			
	16.1	Perceptual decision making	422		
	16.2	Competition through common inhibition	426		
	16.3	Dynamics of decision making	428		
	16.4	Alternative decision models	433		
	16.5	Human decisions, determinism, and free will	436		
	16.6	Summary	439		
17	Mem	ory and attractor dynamics	442		
	17.1	Associations and memory	442		
	17.2	Hopfield model	446		
	17.3	Memory networks with spiking neurons	458		
	17.4	Summary	464		
18	Cort	Cortical field models for perception			
	18.1	Spatial continuum model	468		
	18.2	Input-driven regime and sensory cortex models	472		
	18.3	Bump attractors and spontaneous pattern formation	484		
	18.4	Summary	488		
19	Syna	491			
	19.1	Hebb rule and experiments	492		
	19.2	Models of Hebbian learning	495		
	19.3	Unsupervised learning	505		
	19.4	Reward-based learning	516		
	19.5	Summary	519		
20	Outle	524			
	20.1	Reservoir computing	524		
	20.2	Oscillations: good or bad?	529		
	20.3	Helping patients	541		
	20.4	Summary	544		
	References		547		
	Index		573		

Preface

This textbook for advanced undergraduate and beginning graduate students provides a systematic introduction into the fields of neuron modeling, neuronal dynamics, neural coding, and neural networks. It can be used as a text for introductory courses on Computational and Theoretical Neuroscience or as main text for a more focused course on Neural Dynamics and Neural Modeling at the graduate level. The book is also a useful resource for researchers and students who want to learn how different models of neurons and descriptions of neural activity are related to each other.

All mathematical concepts are introduced the pedestrian way: step by step. All chapters are richly illustrated by figures and worked examples. Each chapter closes with a short summary and a series of mathematical Exercises. On the authors' webpage Python source code is provided for numerical simulations that illustrate the main ideas and models of the chapter (http://lcn.epfl.ch/~gerstner/NeuronalDynamics.html).

The book is organized into four parts with a total of 20 chapters. Part I provides a general introduction to the foundations of computational neuroscience and its mathematical tools. It covers classic material such as the Hodgkin–Huxley model, ion channels and dendrites, or phase plane analysis of two-dimensional systems of differential equations. A special focus is put on the firing threshold for the generation of action potentials, in the Hodgkin–Huxley models, as well as in reduced two-dimensional neuron models such as the Morris–Lecar model.

Part II focuses on simplified models for the dynamics of a *single* neuron. It covers nonlinear integrate-and-fire models with and without adaptation, in particular the quadratic and exponential integrate-and-fire model, as well as the Izhikevich model and adaptive exponential integrate-and-fire model. The question of noise in the neural dynamics is posed and two classic descriptions of noise are presented. First, stochasticity arising from random spike arrival: this approach leads to a noise term in the differential equation of the voltage, and can be formulated as a Langevin equation. Second, intrinsic stochasticity of neurons leading to an "escape" across the firing threshold even when the neuron is in the sub-threshold regime: this approach leads to the framework of a Generalized Linear Model which is systematically introduced and discussed in applications of neuronal coding and decoding. The relation between the neuron models of Part II and biological data is highlighted and systematic parameter optimization algorithms are presented.

х

Cambridge University Press 978-1-107-06083-8 - Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition Wulfram Gerstner, Werner M. Kistler, Richard Naud and Liam Paninski Frontmatter <u>More information</u>

Preface

Part III takes the simplified models derived in Part II and builds networks out of these. The collective properties of the network dynamics are described in terms of equations for the population activity also called the population firing rate. The conditions under which population activity can be described by a standard rate model are identified.

Part IV makes the link from dynamics to cognition. The population activity equations are used for an analysis of famous paradigms of computational and cognitive neuroscience, such as the neural activity during decision making or memory retrieval. In Part IV we also sketch the theory of learning in relation to synaptic plasticity. The book closes with a fascinating application of the principles of neuronal dynamics to help patients suffering from Parkinson's disease.

A small fraction of the text of the present book is based on *Spiking Neuron Models* (Cambridge University Press) which was first published in 2002 and has been reprinted several times since then. In the meantime, the field has changed and we felt that a simple update of *Spiking Neuron Models* for a second edition would not be enough to give credit to the developments that have occurred.

Scientifically, the scope of *Spiking Neuron Models* was limited in several respects. First, it mainly focused on *linear* integrate-and-fire models, and mentioned their nonlinear counterparts only in passing. In the present book, nonlinear integrate-and-fire models are treated in a full chapter. Second, adaptation was neglected in the treatment 10 years ago – mainly because population equations for adaptive neurons were not yet available. In the present book, adaptive integrate-and-fire models are covered at length in a separate chapter and the population activity equations for adaptive neurons are derived. Third, while the Spike Response Model with escape noise has always contained all the features of a Generalized Linear Model (GLM), by the year 2002 the theory of GLMs had not yet found its way into the field of neuroscience and was therefore simply absent from the original book. Given the phenomenal rise of GLMs in neuroscience, the theory of GLMs for fitting neuronal data is given a prominent role in this book. Finally, during teaching we always felt the need to show famous applications of the principles of neuronal dynamics, such as retrieval of contents from associative memories or decision dynamics and the neuroscience of free will. The present book covers these topics.

On a more general level, we felt that it would be useful to have a book that is, from the beginning, designed as a textbook rather than a monograph. Therefore, the present book makes the link to experimental data more visible, has more explanatory text, and, last but not least, provides a series of exercises that have already been tested in the classroom over several years.

We hope that this book will be useful for students and researchers alike.

Wulfram Gerstner, Werner Kistler, Richard Naud, Liam Paninski

Preface

Advice to the reader

Each chapter starts with a specific question and gives first intuitive answers in the first section. As the chapter proceeds, the material gets more advanced, and the presentation becomes more technical. For a first reading of the book, it is possible to read only the first section, or first two sections, of each chapter and just glance at the subsequent sections.

More specific advice depends on the background. For example, readers who are new to the field of computational neuroscience are advised to spend enough time with the classic material of Part I, before they move on to Parts II and IV. The expert reader may skip Part I completely and start directly with Part II.

In Part III, the main ideas are exposed in Chapters 12 and 15, which present the foundations for the rate models in Part IV. The more technical chapters and sections of Part III can be skipped at a first reading, but are necessary for a thorough understanding of the current developments in the field of computational neuroscience.

Part IV contains applications of neuronal dynamics to questions of cognition and can be read in any arbitrary order.

Sections marked by an asterisk (*) are mathematically more advanced and can be omitted during a first reading of the book.

Acknowledgements

We would like to thank our students, visitors, exchange students, and postdocs who carefully read and commented on at least two chapters each, some many more: Dane Corneil, Andrea De Antoni, Mortiz Deger, Mohammad Faraji, Nicolas Frémaux, Felipe Gerhard, Laureline Logiaco, Skander Mensi, Alexandre Payeur, Christian Pozzorini, Kerstin Preuschoff, Tilo Schwalger, Alex Seeholzer, Hesam Setareh, Carlos Stein, Tim Vogels, Friedemann Zenke, Lorric Ziegler.

The writing of the text was a joint work of the four authors. Werner Kistler and Wulfram Gerstner were the authors of *Spiking Neuron Models* from which several sections survived. Liam Paninski was mainly involved in writing Chapters 9–11 of the present book and gave valuable input to other chapters of Part II. Richard Naud contributed to writing Chapters 1–11 and 14 with a leading role in some of these, made valuable comments and suggestions for all other chapters, and was responsible for all the figures. Wulfram Gerstner wrote the first drafts of Parts III and IV and contributed text to all other chapters.

Wulfram Gerstner, Werner Kistler, Richard Naud, Liam Paninski

xi