Contents

Foreword  xi
Hervé Moulin

Contributors  xiii

1 Introduction to Computational Social Choice  1
Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, and Ariel D. Procaccia

1.1 Computational Social Choice at a Glance  1
1.2 History of Social Choice Theory  2
1.3 Book Outline  9
1.4 Further Topics  13
1.5 Basic Concepts in Theoretical Computer Science  17

Part I Voting

2 Introduction to the Theory of Voting  23
William S. Zwicker

2.1 Introduction to an Introduction  23
2.2 Social Choice Functions: Plurality, Copeland, and Borda  26
2.3 Axioms I: Anonymity, Neutrality, and the Pareto Property  30
2.4 Voting Rules I: Condorcet Extensions, Scoring Rules, and Run-Offs  33
2.5 An Informational Basis for Voting Rules: Fishburn’s Classification  38
2.6 Axioms II: Reinforcement and Monotonicity Properties  39
2.7 Voting Rules II: Kemeny and Dodgson  44
2.8 Strategyproofness: Impossibilities  46
2.9 Strategyproofness: Possibilities  51
2.10 Approval Voting  53
2.11 The Future  56
3 Tournament Solutions 57
Felix Brandt, Markus Brill, and Paul Harrenstein
3.1 Introduction 57
3.2 Preliminaries 58
3.3 Common Tournament Solutions 62
3.4 Strategyproofness and Agenda Implementation 76
3.5 Generalizations to Weak Tournaments 81
3.6 Further Reading 83

4 Weighted Tournament Solutions 85
Felix Fischer, Olivier Hudry, and Rolf Niedermeier
4.1 Kemeny’s Rule 86
4.2 Computing Kemeny Winners and Kemeny Rankings 88
4.3 Further Median Orders 94
4.4 Applications in Rank Aggregation 96
4.5 Other C2 Functions 96

5 Dodgson’s Rule and Young’s Rule 103
Ioannis Caragiannis, Edith Hemaspaandra, and Lane A. Hemaspaandra
5.1 Overview 103
5.2 Introduction, Election-System Definitions, and Results Overview 103
5.3 Winner-Problem Complexity 107
5.4 Heuristic Algorithms 113
5.5 The Parameterized Lens 115
5.6 Approximation Algorithms 118
5.7 Bibliography and Further Reading 125

6 Barriers to Manipulation in Voting 127
Vincent Conitzer and Toby Walsh
6.1 Introduction 127
6.2 Gibbard-Satterthwaite and Its Implications 128
6.3 Noncomputational Avenues around Gibbard-Satterthwaite 129
6.4 Computational Hardness as a Barrier to Manipulation 131
6.5 Can Manipulation Be Hard Most of the Time? 139
6.6 Fully Game-Theoretic Models 142
6.7 Conclusions 144

7 Control and Bribery in Voting 146
Piotr Faliszewski and Jörg Rothe
7.1 Introduction 146
7.2 Preliminaries 147
7.3 Control 149
7.4 Bribery 159
7.5 A Positive Look 167
7.6 Summary 168

8 Rationalizations of Voting Rules 169
Edith Elkind and Arkadii Slinko
8.1 Introduction 169
8.2 Consensus-Based Rules 170
<table>
<thead>
<tr>
<th>PART</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3</td>
<td>Rules as Maximum Likelihood Estimators</td>
<td>184</td>
</tr>
<tr>
<td>8.4</td>
<td>Conclusions and Further Reading</td>
<td>195</td>
</tr>
<tr>
<td>9</td>
<td>Voting in Combinatorial Domains</td>
<td>197</td>
</tr>
<tr>
<td>Jérôme Lang and Lirong Xia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.1</td>
<td>Motivations and Classes of Problems</td>
<td>197</td>
</tr>
<tr>
<td>9.2</td>
<td>Simultaneous Voting and the Separability Issue</td>
<td>200</td>
</tr>
<tr>
<td>9.3</td>
<td>Approaches Based on Completion Principles</td>
<td>204</td>
</tr>
<tr>
<td>9.4</td>
<td>Sequential Voting</td>
<td>215</td>
</tr>
<tr>
<td>9.5</td>
<td>Concluding Discussion</td>
<td>221</td>
</tr>
<tr>
<td>10</td>
<td>Incomplete Information and Communication in Voting</td>
<td>223</td>
</tr>
<tr>
<td>Craig Boutilier and Jeffrey S. Rosenschein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>223</td>
</tr>
<tr>
<td>10.2</td>
<td>Models of Partial Preferences</td>
<td>224</td>
</tr>
<tr>
<td>10.3</td>
<td>Solution Concepts with Partial Preferences</td>
<td>227</td>
</tr>
<tr>
<td>10.4</td>
<td>Communication and Query Complexity</td>
<td>234</td>
</tr>
<tr>
<td>10.5</td>
<td>Preference Elicitation</td>
<td>239</td>
</tr>
<tr>
<td>10.6</td>
<td>Voting with an Uncertain Set of Alternatives</td>
<td>244</td>
</tr>
<tr>
<td>10.7</td>
<td>Compilation Complexity</td>
<td>247</td>
</tr>
<tr>
<td>10.8</td>
<td>Social Choice from a Utilitarian Perspective</td>
<td>250</td>
</tr>
<tr>
<td>10.9</td>
<td>Conclusions and Future Directions</td>
<td>256</td>
</tr>
</tbody>
</table>

**Part II Fair Allocation**

| 11   | Introduction to the Theory of Fair Allocation | 261 |
| William Thomson | |
| 11.1 | Introduction | 261 |
| 11.2 | What Is a Resource Allocation Problem? | 263 |
| 11.3 | Solutions and Rules | 268 |
| 11.4 | A Sample of Results | 277 |
| 11.5 | Conclusion | 282 |
| 12   | Fair Allocation of Indivisible Goods | 284 |
| Sylvain Bouveret, Yann Chevaleyre, and Nicolas Maudet | |
| 12.1 | Preferences for Resource Allocation Problems | 286 |
| 12.2 | The Fairness versus Efficiency Trade-Off | 294 |
| 12.3 | Computing Fair Allocations | 298 |
| 12.4 | Protocols for Fair Allocation | 304 |
| 12.5 | Conclusion | 309 |
| 13   | Cake Cutting Algorithms | 311 |
| Ariel D. Procaccia | |
| 13.1 | Introduction | 311 |
| 13.2 | The Model | 311 |
| 13.3 | Classic Cake Cutting Algorithms | 313 |
| 13.4 | Complexity of Cake Cutting | 316 |
| 13.5 | Optimal Cake Cutting | 323 |
| 13.6 | Bibliography and Further Reading | 328 |
## Part III Coalition Formation

### 14 Matching under Preferences

*Bettina Klaus, David F. Manlove, and Francesca Rossi*

14.1 Introduction and Discussion of Applications
14.2 Two-Sided Preferences
14.3 One-Sided Preferences
14.4 Concluding Remarks and Further Reading

### 15 Hedonic Games

*Haris Aziz and Rahul Savani*

15.1 Introduction
15.2 Solution Concepts
15.3 Preference Restrictions and Game Representations
15.4 Algorithms and Computational Complexity
15.5 Further Reading

### 16 Weighted Voting Games

*Georgios Chalkiadakis and Michael Wooldridge*

16.1 Introduction
16.2 Basic Definitions
16.3 Basic Computational Properties
16.4 Voter Weight versus Voter Power
16.5 Simple Games and Yes/No Voting Systems
16.6 Conclusions
16.7 Further Reading

## Part IV Additional Topics

### 17 Judgment Aggregation

*Ulle Endriss*

17.1 Introduction
17.2 Basics
17.3 Aggregation Rules
17.4 Agenda Characterization Results
17.5 Related Frameworks
17.6 Applications in Computer Science
17.7 Bibliographic Notes and Further Reading

### 18 The Axiomatic Approach and the Internet

*Moshe Tennenholtz and Aviv Zohar*

18.1 Introduction
18.2 An Axiomatic Characterization of PageRank
18.3 Trust-Based Recommendations
18.4 Mechanisms for Multilevel Marketing
18.5 Discussion: Additional Applications

### 19 Knockout Tournaments

*Virginia Vassilevska Williams*

19.1 Introduction
19.2 Formal Definition and Some Properties
## CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.3 Agenda Control for General Knockout Tournaments</td>
<td>456</td>
</tr>
<tr>
<td>19.4 Agenda Control for Balanced Trees Is Easy for Special Instances</td>
<td>463</td>
</tr>
<tr>
<td>19.5 Extensions and Further Reading</td>
<td>471</td>
</tr>
</tbody>
</table>

References 475

Index 529