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1 Introduction

The first chapter is devoted to the traditional methods of fiber forming, which are used to

produce macroscopic fibers. Since the novel methods used to form micro- and nanofibers

described in this monograph have branched from the traditional methods, an introduction

into the history of manmade fibers is instructive and fully appropriate (Section 1.1).

There is a brief discussion of such traditional extrusion methods of fiber forming as melt

spinning (Section 1.2), dry spinning (Section 1.3), wet spinning (Section 1.4) and the

integrated process of spunbonding, which is used to form nonwoven fiber webs

(Section 1.5). Melt and dry spinning are closely related to the electrospinning used to

produce nanofibers, so the discussion of these traditional methods allows a first glimpse

of electrospinning, covered in Chapter 5. One of the key elements of spunbonding

is pulling polymer filaments by fast co-flowing air, which is known as meltblowing.

Meltblowing, and its offshoot solution blowing, are also used to form micro- and

nanofibers, as detailed in Chapter 4. In a sense, Section 1.5 serves as an introduction to

the nonwoven nanofiber mats discussed later. Section 1.2 also contains some elements of

quasi-one-dimensional theory; namely, its application to the draw resonance instability

of melt spinning. In its more involved form a similar quasi-one-dimensional approach

is applied in Chapters 3–6 to describe processes characteristic of melt- and solution

blowing and electrospinning used to form micro- and nanofibers.

1.1 History and outlook

The term fiber originates from the French word fibre, from Latin fibra “a fiber, filament,”

of uncertain origin, perhaps related to Latin filum “thread,” or from the root findere “to

split” (Online Etimology Dictionary 2013). For centuries, the use of fibers was limited to

natural materials such as cotton and linen, which had inherent problems with wrinkling.

Silk was difficult to produce and was often too delicate. Wool was strong and abundant,

but would shrink and was irritating next to the skin, and would not last long, as it was a

food source for moths.

The idea of forming manmade fibers dates back to Robert Hooke and was expressed in

1664. In 1713, René Antoine de Réaumur produced the first spun glass fibers and in 1735

suggested forming fibers from liquid varnish. The initial progress paced in quanta of

about 100 years, and in 1883 Sir Joseph Swan issued a solution of nitrocellulose in acetic
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acid into a bath filled with alcohol, and thus realized the first wet spinning process, which

formed long continuous fibers (Lewin 2007).

The invention of rayon extends back to 1855 in England, when Georges Audemars, a

Swiss chemist, discovered how to make cellulose nitrate. In 1884 Count Hilaire

de Chardonnet invented a method of forming fibers from regenerated cellulose. In

1889, the introduction of fabrics made of “artificial silk” at the Paris Exhibition received

a lot of attention, and in 1891 Chardonnet established the first company in Besançon,

France, producing the so-called Chardonnet silk fibers. After it was found that cellulose is

soluble in aqueous solutions containing copper and ammonia, mass production of

cuprammonium rayon fibers was started in Germany in 1899. The first rayon fiber was

introduced as “artificial silk” partly because of its luster and its continuous filament

nature. Viscose rayon fibers were introduced by Ch. F. Cross, E.J. Bevan and C. Beadle in

1893 and commercialized in England in 1905. The American Viscose Company, formed

by S. Courtaulds and Co., Ltd, began production of rayon in 1910 in the USA.

The discovery of the origins of cellulose acetate is attributed to A.D. Little of Boston in

1893. Acetate was first introduced during 1904–1910, by two brothers, Camille and

Henri Dreyfus in Basel, Switzerland (Morris 1989), making acetate motion picture film.

The first commercial textile uses for acetate in fiber form are attributed to the Celanese

Company in 1924. Manmade cellulosics are a major player in the fiber market today and

are expected to continue due to their unique properties in terms of strength, flexibility and

absorbency.

Nylon fibers were the first truly synthetic fibers that were industrially produced in

1939, thanks to the group led by W.H. Carothers. In 1931 Carothers reported on

research at the DuPont Company on a polymer macromolecule called nylon 6,6. By

1938, P. Schlack of the I.G. Farben Company in Germany, polymerized caprolactam and

created a different form of the polymer, identified simply as nylon 6. Nylon was the first

commercially successful synthetic polymer. As the first synthetic fiber, nylon was

designed to replace artificial silk. Nylon led to the global synthetic fiber revolution.

Unlike rayon and acetate, which were derived from renewable cellulose stock, nylon was

synthesized completely from petrochemicals. This first discovery led to the field of

macromolecules and the new world of synthetic fibers. Nylon consists of repeating

units linked by amide bonds and is frequently referred to as polyamide (PA). It is a

thermoplastic, silky material, first used commercially in a nylon-bristled toothbrush

(1938), and then for lady’s stockings (“nylons”; 1940), after being introduced as a fabric

at the 1939 New YorkWorld’s Fair. Nylon stockings were shown in February 1939 at the

San Francisco Exposition. The USA entered World War II in December 1941 and all

production of nylon was dedicated for military use; nylon replaced silk in parachutes and

flak vests, and found many other military uses.

That was the origin of all the modern manmade macroscopic synthetic fibers and

modern textile industry. Polyester’s commercialization in 1953 was accompanied by the

introduction of triacetate. Today, polyester is the king of all synthetic fibers and is found

in almost all apparel and many other applications. Polyesters have been developed with

special shapes, fiber finishes, dyes and pigments, and consequently, offer the greatest

level of control over the performance attributes important to the industries they serve.

2 1 Introduction
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The other important types of fibers and fiber products include fiberboard, made out of

wood fibers (dating back to 1897), fiberglass (1937) and fiber optics (1956).

Today, fiber spinning is a commercial process to produce thin polymeric filaments

that are used by a myriad of industries. Filaments can be produced from synthetic,

manmade or natural polymers, usually by the process of extrusion. Extrusion is the process

of forcing the rawmaterials in their liquid state through tiny orifices and solidifying them to

form fibers. In their initial state the raw materials are solid. If they are thermoplastic

polymers they are heated or melted, while if they are nonthermoplastic, they are dissolved

in a suitable solvent.While we now take these processes for granted, it is interesting to note

that their history only extends back about a century, and rayon was the first manmade

fiber introduced only 160 years ago. Today, manmade fibers are found in almost every

application, ranging from apparel and home furnishings, to automotive industry and

medicine. The introduction of manmade and synthetic fibers has led to the introduction

of many high-performance products touching many different industries. It is hard to

imagine what we would have used for these applications today without access to these

innovations.

The birth of nanofibers is related to the patent by Formhals (1934), in which electro-

spinning of cellulose acetate fibers was proposed. Electrically driven jets were in focus

much earlier (Zeleny 1914, 1917); however, these were jets of inelastic Newtonian

liquids, which are prone to capillary instability and cannot be used to form long

cylindrical filaments. Only the presence of viscoelasticity in the solutions used by

Formhals allowed him to form fibers. Moreover, these were nanofibers, since the

presence of the electric forces results in dramatic reduction of the fiber cross-sectional

diameter due to the so-called electrically driven bending instability found much later by

Reneker et al. (2000). The nanoscale of the fibers was actually considered to be a

drawback in the time of Formhals, since they could not be used in the textile industry.

As a result, they did not stir up toomuch interest, and only occasional publications related

to the electrically driven jets of polymer solutions and melts, and the fibers formed from

them appeared in the 60 years after Fromhals’ work (Baumgarten 1971, Larrondo and

Manley 1981a, 1981b, 1981c). However, the situation had radically changed after the

work of D.H. Reneker’s group in the 1990s (Doshi and Reneker 1995, Reneker and Chun

1996). This was the time of nanotechnology, new applications of nanofibers were

immediately recognized and the number of publications devoted to nanofiber forming

started to increase exponentially. This process continues today and is described in the

technical sections of this book.

The works on traditional and novel methods of fiber forming encompass

synthetic chemistry, polymer physics, non-Newtonian fluid mechanics, electro-

hydrodynamics, applied mathematics and materials science, and require the concerted

efforts of specialists from distant fields. The need for a comprehensive monograph

encompassing different aspects of fiber-forming processes materialized first in the

seminal monograph by Ziabicki (1976). With interest in nanofibers growing, several

monographs exclusively devoted to electrospinning were published. Ramakrishna et al.

(2005) covered the rapidly widening biomedical applications of electrospun nanofiber

mats. Filatov et al. (2007) described the work of Petryanov-Sokolov’s group in the Soviet
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Union, which resulted in electrospun filters for protection from radioactive aerosols.

Wendorff et al. (2012) discussed in depth the aspects of electrospinning related to

materials science.

The existing and rapidly extending processes for forming micro- and nanofibers include

meltblowing, electrospinning, solution blowing and several other methods. The fibers are

formed from petroleum-derived and biopolymers. The scientific foundations of fiber-

forming processes and their practical implementations are rooted in polymer physics,

rheology, non-Newtonian fluid dynamics, electrohydrodynamics, aerodynamics and

applied mathematics, while their applications extend to filters, membranes, electrodes,

coatings, nanofluidics, communications (optical fibers), sensors, biomedical scaffolds and

drug delivery, as well as various military-oriented aspects. The present monograph aims

for a comprehensive in-depth description of all these aspects.

1.2 Melt spinning

The basic principle of fiber extrusion involves feeding pellets or granules of the solid

polymer into an extruder. The pellets are compressed, heated and melted by an extrusion

screw, then fed to a spinning pump and into the spinneret. The polymer is passed through

the extruder and then a filter, to a manifold, and is distributed to one or more spinning

positions (Hensen 1997).

The spinneret is the main component in determining fiber shape and size after

extrusion. It may contain one to several hundreds of capillaries for filament spinning.

In the case of spunbond systems, discussed in more detail in Section 1.5, there are

as many as 6000 capillaries per meter. These tiny openings are very sensitive to

impurities, damage and corrosion. When warranted, the spinneret can be made from

very expensive, corrosion-resistant metals – for example, for extruding fluoropolymers

such as perfluoroalkoxy polymer resin (PFA) and polyvinylidene difluoride (PVDF), as

well as other exotic polymers such as polyphenylene sulfide (PPS). The polymer liquid

feeding them must be carefully filtered, and should not leave residue on the face of the

spinneret, as this would lead to breaks and drips. Most polymers have lubricants, anti-

oxidants and other additives compounded into them to overcome challenges due to

polymer degradation, and spinning breaks and drips. Maintenance is also critical, and

spinnerets must be removed and cleaned on a regular basis to prevent clogging.

Thus, the term extrusion in the fiber industry refers to the process of forming polymeric

filaments by forcing the fluid through a spinneret, and spinning is the collective term used

for the extrusion and solidification of the filaments produced.

An important element is fiber drawing following the extrusion. Drawing results in the

desired properties in the final product and in a decreased fiber diameter, increased

molecular orientation, increased tensile properties and a reduction in strain to failure.

The extent to which fibers can be drawn depends on the properties of the materials being

extruded. Fibers are drawn as much as eight times their original length to form fibers with

the desired properties.

4 1 Introduction
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It is interesting to note also that some polymers such as polyester (PET) require a high

fiber spinning speed to form crystallinity. At about 3200mmin–1 PETstarts to show signs

of crystal orientation. Fibers spun at low speed shrink extensively if exposed to heat. For

PET, therefore, fibers are extruded at much higher speeds – 4000 to 10 000 m min–1 – to

overcome the issues with shrinkage.

There are several methods for forming fibers from molten state or from solution: melt,

dry, wet and gel spinning. These are briefly described in this and the following sections.

In melt spinning, the fiber-forming polymer is melted and extruded through the spinneret,

stretched and directly solidified by cooling (Figure 1.1) and then drawn to achieve higher

degrees of orientation and crystallization. Examples are polypropylene, polyester and

nylon, among others. Melt spinning is by far the most widespread system globally.

Continuous filaments, as well as discontinuous crimped fibers (also referred to as staple

fibers), are globally available. The process for forming continuous filaments is somewhat

different from those for producing staple fibers. Staple fibers are produced in continuous
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Figure 1.1 (a) Melt spinning (Fiber Source 2013). (b) Schematic of an individual molten threadline in

melt spinning process: 1 – spinneret, 2 – molten threadline, which cools down due to convective

heat transfer to the surrounding gas and solidifies, 3 – winding bobbin. Ziabicki (1976). Courtesy

of John Wiley and Sons.
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form in large tows, which are then crimped, heat set and cut into the desired staple

lengths. These staple fibers are then blended with other fibers (natural as well as

manmade or synthetic fibers) and are formed into a yarn. Most textile yarns are made

from blends of various staple fibers; the yarn spinning technology is quite well developed

and produces incredibly interesting and desirable textures and properties. Filaments are

sometimes textured to form bulk or stretch in post-processing. Many of the facilities have

integrated polymer synthesis and fiber formation – that is, the most widespread processes

for staple (discontinuous) fiber production couple synthesis and fiber extrusion, and

thereby control costs.

Molten threadlines in the melt spinning process are free liquid jets pulled by a winding

bobbin to form solidified fibers (Figure 1.1b). These molten threadlines are subjected to

several instabilities and perturbation-amplification phenomena, which can make the

resulting fibers nonuniform. One of these instabilities, the so-called draw resonance,

was discovered in the seminal works of Matovich and Pearson (1969) and Pearson and

Matovich (1969), and below we discuss the elementary theory of this phenomenon.

Consider an isothermal straight liquid threadline that is issued from a spinneret hole

of radius a0with velocity V0. The longitudinal axis along the threadline axis is denoted x.

It is reckoned from the spinneret hole where x = 0. The threadline has a circular cross-

section and tapers due to the pulling force transmitted from a winding bobbin located at

x = L. The winding velocity imposed by the bobbin on the threadline at x = L is V1;

however, the cross-sectional radius at that point is to be determined.

To formulate the mass and momentum balance and derive the corresponding

quasi-one-dimensional equations, we consider an infinitesimally short slice of the thread-

line of length dx located close to cross-section x. The liquid mass currently contained in

this slice is equal to ρπa2dx, where ρ is the liquid density and a(x,t) is the cross-sectional

radius, which depends on x and time t. During the time interval dt, this mass can change,

due to the liquid influx through the cross-section x, which is ρπ a2Vð Þjxdt, and the outflow

through the cross-section x+dx, which is ρπ a2Vð Þjxþdxdt, where V(x,t) is the longitudinal

velocity in the threadline. The mass balance reads

D ρπa2dx
� �

¼ ρπ a2V
� �

j
x
dt�ρπ a2V

� �

j
xþdx

dt ð1:1Þ

Using the Taylor series, we see that

a2V
� �

j
x
� a2V
� �

j
xþdx

¼ �
∂ a2Vð Þ

∂x
dx ð1:2Þ

and thus Eq. (1.1) reduces to the following differential mass balance, or following the

fluid mechanical terminology, continuity equation:

∂a2

∂t
þ

∂Va2

∂x
¼ 0 ð1:3Þ

In the momentum balance, we neglect inertial forces, surface tension and gravity, and

account for only the internal normal stresses acting in the threadline cross-sections and

assumed to be dominant. Denote normal stress as σxx, and thus the corresponding force

6 1 Introduction

www.cambridge.org/9781107060296
www.cambridge.org


Cambridge University Press
978-1-107-06029-6 — Fundamentals and Applications of Micro- and Nanofibers
Alexander L. Yarin , Behnam Pourdeyhimi , Seeram Ramakrishna
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

acting in cross-section x of the infinitesimal threadline slice under consideration would

be σxxπa
2jx. Accounting for the force acting at the cross-section x+dx of the slice, we

form the momentum balance in the following form

σxxπa
2jx � σxxπa

2jxþdx ¼ 0 ð1:4Þ

which means that

∂σxxa
2

∂x
¼ 0 ð1:5Þ

In the elementary model we are dealing with, we assume that liquid in the threadline is

Newtonian fluid and is characterized by a single rheological parameter, viscosity µ (see

Loitsyanskii 1966, Landau and Lifshitz 1987, Batchelor 2002). Polymer melts used in

melt spinning, as well as polymer solutions used in dry and wet spinning, can hardly be

treated as viscous Newtonian liquids, since they develop significant and even dominant

elastic stresses in strong elongational flows. Such fluids are viscoelastic. Viscoelasticity

is introduced in Chapter 2 and accounted for when considering different types of polymer

jet flows and fiber-forming processes relevant to manufacturing of micro- and nanofibers

in Chapters 3–5. The simplified rheological model of Newtonian fluids employed here

would be directly relevant to the formation of optical fibers (see Sections 6.6 and 6.7 in

Chapter 6). Molten glasses are Newtonian liquids, albeit their viscosities are strong

functions of temperature. Here, for simplicity, we consider an isothermal case and thus

viscosity µ = const.

For the incompressible Newtonian fluids

σxx ¼ �pþτxx ð1:6Þ

σyy ¼ �p þ τyy ð1:7Þ

where p is pressure, σyy is the radial normal stress in the threadline cross-section, and τxx
and τyy are the normal deviatoric stresses corresponding to σxx and σyy, respectively.

Since the outer surface of the threadline can practically always be considered as

unloaded because all the tractions imposed by air or surface tension effects are negligibly

small in comparison with the inner stresses in the liquid, σyy = 0 practically everywhere in

the cross-section (Yarin 1993), and thus Eq. (1.7) yields −p = −τyy. The latter allows

transformation of Eq. (1.6) to the following form

σxx ¼ τxx � τyy ð1:8Þ

For Newtonian fluids,

τxx ¼ 2μ
∂V

∂x
; τyy ¼ �μ

∂V

∂x
ð1:9Þ

and thus using Eq. (1.8) we arrive at

σxx ¼ 3μ
∂V

∂x
ð1:10Þ

1.2 Melt spinning 7
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where the factor 3µ is called the Trouton viscosity (Yarin 1993).

Substituting Eq. (1.10) into Eq. (1.5), we transform the momentum balance to the

following form

∂

∂x
a2

∂V

∂x

� �

¼ 0 ð1:11Þ

The continuity and momentum balance equations (1.3) and (1.11) form a closed

system of the two quasi-one-dimensional equations required to determine two unknown

functions, the radius and velocity distributions a(x,t) and V(x,t). These equations repre-

sent the simplest version of the quasi-one-dimensional equations of the dynamics of free

liquid jets (3.1) and (3.2) discussed in Section 3.1 in Chapter 3.

Render Eqs. (1.3) and (1.11) using the following scales: L for x, a0E
–1/2 for a and V1

for V. Here E= V1/V0 denotes the draw ratio, which is the governing parameter of

this problem. The continuity and momentum balance equations (1.3) and (1.11) in the

dimensionless form do not change.

In the case of melt spinning, solutions of the dimensionless system of Eqs. (1.3) and

(1.11) are subjected to the following dimensionless boundary conditions:

x ¼ 0 : a ¼ E1=2; V ¼ E�1 ð1:12Þ

x ¼ 1 : V ¼ 1 ð1:13Þ

In steady state, the time derivative in Eq. (1.3) vanishes and the steady-state solutions as
and Vs depend only on x:

as¼ E 1�xð Þ=2; Vs¼ E x�1ð Þ ð1:14Þ

Since the draw ratio E is always larger than 1, Eqs. (1.14) describe tapering of the

threadline from the cross-sectional radius a0 to a smaller value a1= a0E
–1/2 at the winding

bobbin, whereas velocity is increasing from V0 to V1. To form smaller fibers, one is

interested in increasing the draw ratio E. This, however, is subject to a severe limitation

related to the instability of the steady-state solution (1.14). Indeed, consider small

perturbations α<<1 and β<<1 of these solutions, i.e. take

a ¼ as xð Þ 1þ α x; tð Þ½ �; V ¼ Vs xð Þ 1þ β x; tð Þ½ � ð1:15Þ

Substituting these distributions into Eqs. (1.3) and (1.11), and linearizing the resulting

equations, we arrive at the following system of equations for α and β

∂α

∂t
þ Vs

∂α

∂x
þ
Vs

2

∂β

∂x
¼ 0 ð1:16Þ

2
∂α

∂x
þ

∂β

∂x
þ

1

ln E

∂
2β

∂x2
¼ 0 ð1:17Þ

Since the conditions at the spinneret hole and the winding bobbin are assumed to be fixed,

the radius and velocity perturbations α and β are subject to the following boundary

conditions

8 1 Introduction
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x ¼ 0: α ¼ 0; β ¼ 0 ð1:18Þ

x ¼ 1: β ¼ 0 ð1:19Þ

Excluding β from the system of equations (1.16) and (1.17), we reduce it to a single

equation for α:

∂
2
α

∂x2
þ E 1�xð Þ ∂

2
α

∂x∂t
¼ 0 ð1:20Þ

with the corresponding equation relating β to α.

Solving Eq. (1.20) for α, one can find the corresponding β as

β ¼ �2αþ
2E 1�xð Þ

ln E

∂α

∂t
þ

2

ln E

∂α

∂x
þ ψ tð Þ ð1:21Þ

where ψ (t) is a funtion of t.

The solutions for α and β are subject to the boundary conditions (1.19). As a result, we

find the following distribution of the radius perturbation:

α ¼ exp γtð Þ F xð Þ; F xð Þ ¼

ðx

0

exp
γE1�ξ

ln E

� �

dξ ð1:22Þ

where ξ is the dummy variable, and the eigenvalue γ satisfies the following characteristic

equation:

γ ¼ �
F 1ð Þ

ð1

0

E1�ξF ξð Þdξ

ð1:23Þ

Solutions γ of Eq. (1.23) are sought on the complex plane.

The investigation of the characteristic equation (1.23) shows that in the range 1 < E < 20.22

it possesses only the solutions with a negative real part γr. Therefore, the perturbations (1.22)

decay in time as exp �jγrjtð Þ, and the steady-state solution for the molten threadline (1.14)

appears to be stable. At E = 20.22 the nondecaying small oscillations set in, which corre-

sponds to the solution of Eq. (1.23), γ = 0.693i, where i is the imaginary unit. Mathematically

speaking, this is a classical Hopf bifurcation. At 20.22 < E < 49.98 the solutions of Eq. (1.23)

represent a pair of complex conjugate solutions with a positive real part γr. The corresponding

linear perturbations grow in time as exp(γrt), and the draw resonance sets in (Pearson and

Matovich 1969, Pearson 1985). Some of the relevant eigenvalues found from Eq. (1.23) are

listed in Table 1.1, where γi denotes the imaginary part of γ.

At E > 20.22, the instability of the steady-state solution (1.14) results in a bifurcation to

a new solution. Under the fixed boundary conditions (1.18) and (1.19), the nonlinear

solutions of the continuity and momentum balance equations (1.3) and (1.11) can be

found either by the asymptotic method of multiple scales or numerically (Yarin 1993,

Yarin et al. 1999). The solutions represent the self-sustained oscillations (the so-called

limit-cycle solution) illustrated by the numerical results depicted in Figure 1.2. The fiber

radius at the winding bobbin a(1,t) becomes a periodic function of time, with the

1.2 Melt spinning 9
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amplitude variation in the range 0.5 to 7.5 (see Figure 1.2b). Therefore, formation of

uniform fibers at E > 20.22 is impossible, and the draw resonance instability severely

restricts the increase of the winding speed, the other parameters being fixed.

Donnelly and Weinberger (1975) conducted model experiments with isothermal

spinning of Newtonian liquids, intended to verify experimentally the existence of the

draw resonance instability. This work represents significant fundamental interest,

since it excluded all complicating effects related to the heat transfer at the threadline

surface, the elasticity of the polymer melt and solidification. In these experiments a

highly viscous silicon oil threadline was drawn by a winding bobbin, from which it

was immediately scraped by a doctor blade located close to the bobbin surface. The

experiments by Donnelly and Weinberger (1975) showed that the draw resonance sets

in as soon as the draw ratio E reaches a value close to 20, in full agreement with the

theory. Similar data were obtained by Ishihara and Kase (1976), who employed another

liquid, polyethylene terephthalate (PET), with approximately Newtonian behavior. In

their case the threadline solidified on contact with the winding bobbin, which was

submerged in cold water.

In the general case, perturbations can be also introduced at both ends of molten

threadlines due to oscillations of metering pumps, equipment vibratitons and blowing

of air for fiber cooling. Then, the question of the threadline sensitivity to the imposed

perturbations arises. To illustrate that, consider the case where only perturbations of the

initial threadline radius are present, for example, due to the die swell affected by the

oscillations of the metering pump. In this case x = 0 approximately corresponds to the end

of the die swell (the length of the die swell is negligible compared to the length of

the threadline). Then, the linearized boundary conditions that replace the boundary

conditions (1.18) and (1.19) become

x ¼ 0: α ¼ α0 sin ωt; β ¼ 0 ð1:24Þ

x ¼ 1: β ¼ 0 ð1:25Þ

where α0 and ω are the dimensionless perturbation amplitude and frequency,

respectively.

Table 1.1 Spectrum (1.23) of the linear stability problem. Reprinted with

permission from Yarin et al. (1999). Copyright 1999, AIP Publishing LLC.

E γr γi

19 –0.0111 0.731

20.22 0 0.693

21 0.00495 0.6723

25 0.01918 0.5869

28 0.0258 0.5369

30 0.029 0.508

35 0.0349 0.4497
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