Index

accumulator systems, 239, 240, 302, 447
 as digital integrators, 243
adders, 238, 447
additivity property, 26, 250
 distinction from homogeneity, 27
adjustable windows, 521
advance form, 240, 245, 254, 275
advance-operator form, 275
aliasing, 170–173, 373
 disguised in s-to-z mapping, 224
downsampling and, 217, 257, 379, 384
fundamental-band representation and, 341
 impulse invariance method and, 487–491
 in circular convolution, 588–590, 597
 in exponentials, 226–230
 in sinusoids, 173–176, 226–230
 multiple folding and, 170
 prevented by filtering, 170
 relation to apparent frequency, 174
 sub-Nyquist sampling and, 180, 378
time-domain, 566
treachery of, 169
allpass systems, 95, 542
amplitude modulation, 58
amplitude response, 513, 540
analog filter transformations
digital filters designed by, 485–507
lowpass-to-bandpass, 117–118
lowpass-to-bandstop, 118–120
lowpass-to-highpass, 116–117
lowpass-to-lowpass, 115–116
analog filters, 85–150, 247
digital realization of, 370
families of, 120–149
ideal, 100
 practical specification of, 112
analog resampling, 393
analog signals, 3, 185
digital processing of, 370–379
analog systems, see continuous-time systems
analog-to-digital conversion, 185–199, 247
analog-to-digital converters
 bipolar, 189
counting, 197
dynamic errors, 194
effective number of bits, 195
flash, 198
gain errors, 194
missing codes, 195
nonlinearity errors, 195
offset errors, 194
quantization errors, 189
saturation errors, 189
static errors, 194
successive approximation, 197
timing jitter, 195
transfer characteristics of, 189
unipolar, 189
analysis equation
discrete Fourier transform, 560, 584, 600
discrete-time Fourier transform, 331, 356, 384
Fourier series, 34, 67
Fourier transform, 45, 67, 356
Laplace transform, 69, 72
z-transform, 397, 410, 434
angles, see phase spectrum
anti-aliasing filters, 170
 importance of type, 173
 in digital processing of analog signals, 371
 used in decimation, 217, 257, 380, 384
anti-causal signals, 15, 231
anticipative systems, see systems, noncausal
anti-mirror image polynomials, 514
antisymmetry, see conjugate antisymmetry; odd
 symmetry
aperiodic signals, 21, 233
 DT Fourier transform and, 331
 Fourier transform and, 45
aperture effect, 200–201
apparent frequency, 173–176, 226–230
 multiple folding to determine, 175
associative property, 292
asymmetric quantization, see quantization,
 asymmetric
asymptotic stability, see internal stability
attenuation, 112, 150
 maximum passband, 112
 minimum stopband, 112, 529
audio signals, 96, 187
 nonlinear quantization of, 193
resampling, 380
autocorrelation function
 continuous-time, 61
 discrete-time, 354
auxiliary conditions, 278, 318, 438
backward difference systems, 243, 255, 447
backward difference transform, 491–492
bandlimited interpolation, 367, 397
 understanding resampling using, 380
bandlimited signals, 156, 169, 171, 370
bandpass filters, 465, 501, 504
 group delay and, 97–99
 ideal, 100, 362
 impulse invariance method and, 489
 poles and zeros of, 466
 practical specification of, 112
 restrictions of linear phase FIR, 514
 transformation of lowpass to, see filter transformations
window method and, 533
bandstop filters, 463, 465, 501, 506
 ideal, 100, 362
 impulse invariance method and, 374, 489
 poles and zeros of, 467
 practical specification of, 112
 restrictions of linear phase FIR, 514
 transformation of lowpass to, see filter transformations
window method and, 533
bandwidth, 169, 368, 610
audio signal, 187
 bandpass signal, 97, 176
discrete-time Fourier transform and, 347, 365
downsampling effect on, 381
essential, 63
 Fourier transform and, 50, 53, 365
relationship between time constant and, 315
 sampling theorem and, 156, 158, 161, 200
window functions and, 104, 109, 518
Bartlett window, see triangular window
basis signals, 69, 545
basis vectors, 545
band rate, 186
Bessel polynomials, reverse, 148
table of, 148
Bessel-Thomson filters, 147–149
BIBO stability, see bounded-input bounded-output stability
bilateral Laplace transform, see Laplace transform
bilateral z-transform, see z-transform
bilinear transform, 491–497
 discrete-time filter specifications and the, 500
 simplified procedure for the, 499
 with prewarping, 497–501
binary signals, 3, 185, 608
binomial coefficient, 249
bit-reversed addressing, 608
bits, 185
Blackman window, 110, 520, 530
block convolution, 593–599
 overlap-and-add method, 594–597
 overlap-and-save method, 594, 597–599
block diagrams, 1, 445–457
 analog-to-digital converters, 196
 continuous-time systems, 25, 93
digital signal processing systems, 2
digital-to-analog converters, 199
discrete-time systems, 238, 356
 sampling and reconstruction, 158, 162
bounded-input bounded-output stability, 29, 256, 306, 444
 asymptotic stability not guaranteed by, 309
 frequency response and, 86, 355, 419
 relation to internal stability, 307–309
 steady-state response and, 458
 transfer function and, 32, 444
branch nodes, 238
buffer zones, 125
butterfly, 604
Butterworth filters, 120–129
 comparing Chebyshev and, 130
determination of cutoff frequency, 124
determination of order, 124
pole locations, 121
transfer function, 121
transformation to digital, 485–507
Butterworth polynomials, normalized, 122
 factored-form table of, 123
table of, 122
canonical direct form, see direct form II realization
canonical realizations, 450, 451, 508
cascade
 compressor and expander order of, 258–261
identity systems created by, 257, 301, 446
loading effects, 445
second-order sections, 508
cascade realizations, 300, 445, 448, 453
performance of, 457
cascade systems, 445
causal systems, 29, 254, 290, 447, see also causality
causality, 29, 254
realizable systems requirement of, 101, 362, 486
unilateral Laplace transform and, 69
unilateral z-transform and, 416
characteristic equations, 278
of nonrecursive systems, 282
characteristic modes, 278, 282
impulse response and, 285
relationship between system behavior and, 311–317
characteristic polynomials, 278
characteristic roots, 32, 278
of nonrecursive systems, 282
relationship between system behavior and, 311–317
stability determined from, 32, 307, 444
characteristic values, see characteristic roots
Chebyshev filters, 129–139
determination of order, 131
inverse, see inverse Chebyshev filters
pole locations, 131
ripple parameter, 130
table of denominator coefficients, 133
transfer function, 131
transformation to digital, 485–507
Chebyshev polynomials, 129
circular convolution, 68, 351
aliasing in, 588–590
graphical interpretation of, 583
linear convolution by, 585
zero padding and, 586
circular convolution property, 581–582
circular correlation property, 582
circular shift, 575–578, see also modulo-N shift
circular shifting property, 580
clock jitter, 195
commutative property, 291
compact disc, 187
complex-conjugation property
 discrete Fourier transform, 580, 584
discrete-time Fourier transform, 343, 356, 584
Fourier series, 67
Fourier transform, 52, 67, 356
Laplace transform, 72
z-transform, 427, 434
complex exponential functions, see exponential functions
complex filters
 discrete Fourier transform computed using, 601
complex frequency, 12, 222, 396
 Laplace transform and, 69
 relating s and z, 222
 z-transform and, 410
complex frequency plane, 13, 222, 306, 396
 poles and zeros located in the, 90, 462
complex inputs, 294
complex poles, 422, see poles, complex
complex roots, 280
realization of conjugate pairs, 454
complex signal processing, 17
complex zeros, see zeros, complex
compression
 continuous-time, 5, 53
 digital resampling and, 257
 discrete-time, 216, 258, 394, see also down-sampling
 μ-law, 193
compressors, 257, see also compression
 block representation of, 258, 379
 order of expanders and, 258–261
computational complexity
 discrete Fourier transform, 600
 fast Fourier transform, 603, 608
 Goertzel’s algorithm, 601–603
conformable, 630
conformal mapping, 492
conjugate antisymmetry, 20, 54, 233, 343
conjugate symmetry, 20, 54, 233, 343
conjugate-symmetry property
 discrete Fourier transform, 580
constant-parameter systems, see time-invariant systems
continuous-time Fourier transform, see Fourier transform
 discrete Fourier transform to estimate the, 610
continuous-time signals
 defined, 3
 discrete-time systems and, 213, 370
 exponential functions, 12–13
Fourier analysis of, 33–68
Laplace transform of, 68–73
models of, 7–15
sinc function, 13–15
sinusoids, 12
size of, 21
unit gate function, 8
unit impulse function, see Dirac delta function
unit step function, 7
unit triangle function, 8
continuous-time systems, 25, 26, see also analog filters
analog systems compared with, 370
differential equation description of, 28, 89
discrete-time systems compared with, 213
discrete-time systems to approximate, 372
frequency response of, 85–92
Laplace transform analysis of, 31
periodic inputs and, 34
properties of, 25–30
signal transmission through, 92–99
stability of, 29, 32
total response of, 27
zero-input response of, 27
zero-state response of, 27, 28
continuous-to-discrete conversion, 213, 247, 371, see also analog-to-digital conversion
controllability, 32, 309
convergence
in the mean, 41, 335
of Fourier series, 41–42
point-wise, 41
region of, see region of convergence
uniform, 41, 335
convolution, 29, 253, 290
block, see block convolution
circular, see circular convolution
fast, 590, 617
overlap-and-add method, see block convolution
overlap-and-save method, see block convolution
polynomial multiplication by, 299
with an impulse, 292
zero-state response and, 28, 252, 288
convolution integral, 29
convolution property, 433
discrete Fourier transform circular, 581, 584
discrete-time Fourier transform, 351–354, 356, 584
discrete-time Fourier transform circular, 351–354, 356, 584
Fourier series, 67
Fourier transform, 59, 60, 67, 356
Laplace transform, 72
z-transform, 433, 434
convolution sum, 253, 290
from a table, 293
graphical procedure, 294–296
matrix form of, 327
properties of the, 291
sliding-tape method, 296–298
Cooley, J. W., 603
coprime, 234, 260, 394
corner frequency, see cutoff frequency
correlation
continuous-time, 61
correlation used to compute, 61
discrete-time, 354
importance of argument order in, 61
correlation property
discrete Fourier transform circular, 584
discrete-time Fourier transform, 354, 356, 584
Fourier series, 67
Fourier transform, 61, 67, 356
counting converters, 197
cross-covariance function
continuous-time, 61
cross-correlation function
continuous-time, 61
decimation filters, 217, 257
cutoff frequency, 100, 315
cyclic convolution, see circular convolution
data truncation, 104–112
dc component, 34
decibel scale, 86
decimation, 217, 380, 383–387
decimation filters, 217, 257
frequency response of ideal, 384
impulse response of ideal, 391
interpolation filter combined with, 261
decimation-in-frequency algorithm, 609
decimation-in-time algorithm, 604–608
decimators, 257, 384
block representation of, 258, 379
interpolators in cascade with, 394–395
output of ideal, 391
decomposition property, 27, 251
decomposition property, 27, 251
decomposition, 237
delay, 238, 447, see also shifting
bandlimited, 374
beneficial effect of filter, 102–103
ideal, 31, 87, 94, 147
delay form, 240, 254, 358, 440
delay-operator form, 275
delta modulation, 380
deterministic signals, 25
difference equations, 239, 245, 485
 advance form, 240, 245, 254, 275
 block realizations of, 447–457
 classical solution of, 317
 delay form, 240, 254, 255, 358, 440
 differential equation kinship with, 246
 ensuring causality of, 254
 frequency response from, 358
 initial conditions, 270
 iterative solutions to, 270
 linearity of, 251
 nonrecursive form, 239, 273
 order of, 245
 preferred form, 255
 recursive form, 239, 273
 recursive solutions to, 270
 z-transform solution of, 436–445
differential equations, 28, 89
difference equation kinship with, 246
differentiation property
 discrete-time Fourier transform, 350, 356
 Fourier series, 67
 Fourier transform, 59, 67, 356
 Fourier transform time, 59, 67
 Laplace transform, 72
 z-transform z-domain, 433, 434
differentiators
 backward difference transform and digital, 492
 bandlimited digital, 377
 bilinear transform unsuited to design digital, 496
digital, 241
 ideal, 31, 88, 496, 527
 stability of, 256
 window method design of digital, 526
 discrete-time systems referred as, 247
 ideal, 362
 digital processing of analog signals, 370–379
digital resampling, 257, 379–395
digital signal processing, 370–379
 advantages of, 248
 block diagram of, 2
digital signals, 3, 185, 248, see also analog-to-
digital conversion
 binary, 185–194
L-ary, 3, 185
digital systems, see discrete-time systems
digital-to-analog conversion, 199–202
Dirac delta function, 9
 connection to the unit step function, 10
 impulse sampling using the, 155–161
 properties of the, 10
Dirac, P. A. M., 9
direct form I realizations, 255, 448
direct form II realizations, 449–450, 508
direct form realizations, 447–450
 transposed, 451–453
Dirichlet conditions
 Fourier series, 42
 Fourier transform, 47
Dirichlet kernel, 104
discrete Fourier transform, 538, 559–569
 analysis equation, 560, 584, 600
 bins, 561
 continuous-time Fourier transform estimated with the, 610
 direct, 560, 561
 discrete-time Fourier series equivalence to the, 612
 discrete-time Fourier transform obtained by interpolation of the, 567–569
 fast Fourier transform, 603
 frequency resolution of the, 563
 Goertzel’s algorithm, 600–603
 inverse, 561
 matrix representation of the, 565–566
 Parseval’s theorem, 583
 periodicity of the, 570
 ‘picket fence effect and the, 563
 properties of the, 579–583
 synthesis equation, 561, 584, 600
 table of properties, 584
 uniqueness, 569–572
 zero padding and the, 563–565
discrete-time Fourier series, 612–617
 analysis equation, 612
 discrete Fourier transform equivalence to the, 612
 synthesis equation, 612
 discrete-time Fourier transform, 331–342
 analysis equation, 331, 356, 584
 continuous-time Fourier transform connection to the, 338, 364–370
dependencies of the, 559
direct, 332
existence of the, 335
genralization to z-transform, 395–397
generalized limits of integration, 338
inverse, 332
LTID system analysis and the, 355
nuisance of periodicity, 340
obtained by discrete Fourier transform interpolation, 567–569
Parseval’s theorem, 355
periodic and continuous nature of the, 337–338
properties of the, 343–355
synthesis equation, 332, 338, 356, 584
Table of pairs, 340
Table of pairs using the fundamental band, 341
Table of properties, 356, 584
discrete-time sequences, see discrete-time signals
discrete-time signals
apparent frequency of, 226
circular representation of, 573
defined, 3, 212
exponential functions, 222–230
Fourier analysis of, 331, 560
inherently bandlimited, 228
models of, 219–230
sinusoids, 222, 225–226, 233
size of, 236
unit impulse function, see Kronecker delta function
unit step function, 219
z-transform of, 410
discrete-time systems, 1, 212, see also digital filters
alternate names for, 247
block diagrams of, 445–457
continuous-time systems approximated by, 372
continuous-time systems compared with, 213
difference equations of, 245, 254, 485
discrete-time Fourier transform analysis of, 355–358
examples of, 238–245
frequency response of, 304, 358, 457–468
intuitive insights into, 311–317
properties of, 248–257
signal transmission through, 359–362
stability of, 256, 305–311, 444
total response of, 250
z-transform analysis of, 410–485
zero-input response of, 250
zero-state response of, 250, 252
discrete-to-continuous conversion, 213, 247, 371,
see also digital-to-analog conversion
distortion, 96
distortionless transmission, 94, 359
in bandpass systems, 97, 360–362
measure of delay variation, 95, 360
division
polynomial long, 425
downsampling, 216, 344, 379
block representation of, 257, 379
foolishness of, 384
fractional sampling rate conversion and, 394
frequency-domain perspective of, 379, 383–387
time-domain perspective of, 391
drill exercises with MATLAB, see MATLAB drill exercises
duality
discrete-time Fourier transform and, 343
time-frequency, 50, 66, 68, 394
duality property
discrete Fourier transform, 566, 579, 584
Fourier transform, 51, 67, 356
duobinary pulse, 208
dynamic errors, 194
dynamic systems, 256
effective number of bits, 195
eigenfunctions, 31
eigenvalues, 31, 278, see also characteristic roots
elliptic filters, 144–147
transfer function, 145
elliptic rational function, 145
energy
computed as an inner product, 545
essential bandwidth and, 63
frequency-domain representation of, 61, 354, 582
of continuous-time signals, 21
of discrete-time signals, 236
energy signals
all practical signals must be, 25
continuous-time, 22
discrete-time, 236
periodic replication of, 181
energy spectral density, 62, 355
envelope delay, see group delay
equiripple functions, 129
passband, 129, 144
stopband, 139, 144
error
minimum norm-squared, 545–546
essential bandwidth, 63
Euler’s formula, 12
variations of, 17
even symmetry, 18, 54, 232, 344
in Fourier analysis, 66
linear phase FIR filters with, 512
everlasting exponentials
discrete Fourier transform and, 560
discrete-time Fourier transform and, 332, 419
Fourier series and, 34
Fourier transform and, 45, 70
Laplace system response to, 30, 85
LTID system response to, 303, 357
z-transform and, 411, 419
everlasting signals, 16, 231
everlasting signals, 16, 231
examples with MATLAB, see MATLAB examples
expanders, 257, 389, see also expansion
block representation of, 258, 379
order of compressors and, 258–261
expansion
continuous-time, 5, 53
digital resampling and, 257
discrete-time, 218, 258, 394, see also upsampling
exponential Fourier series, see Fourier series
exponential functions
apparent laziness of discrete-time, 229–230
continuous-time, 12–13
discrete-time, 222–230
everlasting, see everlasting exponentials
relationship between sinusoids and, 12
exponential inputs
LTIC system response to, 30, 85
LTID system response to, 303, 321, 357
external description of a system, 32, 444
external inputs
system response to, see zero-state response
external stability, see bounded-input bounded-output stability
fast convolution, 590, 617
fast Fourier transform, 603–612
butterfly, 604
decimation-in-frequency algorithm, 609
decimation-in-time algorithm, 604
FIR filter design by the, 538
mixed-radix, 610
radix-2, 610
twiddle factor, 604
feedback coefficients, 452, 485
FIR filter, 515
feedback systems, 446
feedforward coefficients, 452, 485
filter transformations
lowpass-to-bandpass, 117, 504
lowpass-to-bandstop, 118, 506
lowpass-to-highpass, 116, 501
lowpass-to-lowpass, 115
filters
analog, 85–150
anti-aliasing, 170
bandpass, see bandpass filters
bandstop, see bandstop filters
causal, 101
complex, see complex filters
cutoff frequency of, 100
defined, 100
digital, 485–553
discrete Fourier transform and, 590–599
effects of poles and zeros on, 89, 463–464
families of analog, 120–149
finite impulse response, 511–552, see also finite impulse response filters
frequency response of, 85–92, 304, 356, 457–468
highpass, see highpass filters
ideal, 100, 112, 362–363
infinite impulse response, 485–507, see also infinite impulse response filters
linear phase, 483, 511–515, 539
lowpass, see lowpass filters
passband of, 100
practical, see practical filters
practical specification of, 112–113, 500
practical specification of FIR, 529
realizable, 101, 363–364
realization of, 447–457
realization of FIR, 455, 515–517
realization of IIR, 508–510
stopband of, 100
time constant of lowpass, 314
window design of, 106–109
final value theorem, 435
finite-duration signals, 69, 104, 169, see also finite impulse response filters
discrete-time Fourier transform of, 342
finite impulse response filters, 288, 485, 511–552
equiripple, 550
Fourier series method design of, 521
frequency-domain methods to design, 537–552
frequency-weighted least squares, 544–550
linear phase, 511–515, 539, see also linear phase FIR filters
realization of, 455, 515–517
window method design of, 521–522, see also window method FIR filters
windowing, 517–521
finite-length sequences, 414
finite word-length effects, 469–474
first-order factors
method of, 422
first-order hold, 168, 206
flash converters, 198
flat-top sampling, 206
folding frequency, 170
forced response, 317–321
from a table, 319
forward difference systems, 243, 255
Fourier integral, see Fourier transform; discrete-time Fourier transform
Fourier series, 33–45
analysis equation, 34, 67
convergence at jump discontinuities, 36
Dirichlet conditions and convergence of the, 42
discrete-time, see discrete-time Fourier series
finality property, 37
frequency spectrum, 34
Gibbs phenomenon and truncation of the, 43
minimizing mean square error property, 36
orthogonality principle to derive the, 547
properties of the, 66–68
symmetry properties, 66
synthesis equation, 34, 67
table of properties, 67
trigonometric forms of the, 37
Fourier series method FIR filters, 521
Fourier transform, 45–68
analysis equation, 45, 67, 356
computed from signal samples, 370
direct, 45, 50
discrete, see discrete Fourier transform
discrete-time, see discrete-time Fourier transform
discrete-time Fourier transform connection to the, 338, 364–370
existence of the, 47
fast, see fast Fourier transform
inverse, 45, 50
Laplace transform connection to the, 70
Parseval's theorem, 62
properties of the, 50–66
symmetry properties, 66
synthesis equation, 45, 67, 356
table of pairs, 48
table of properties, 67, 356
fractional sampling rate conversion, 258–261, 394
frequency
apparent, see apparent frequency
complex, see complex frequency
cutoff, 100, 315
folding, 170
fundamental, 34, 233
negative, 36–37, 172
frequency bins, see discrete Fourier transform, bins
frequency-convolution property, see convolution property
frequency-differentiation property, see differentiation property
frequency-domain analysis, 30, 92, 351
frequency resolution, 563
frequency response, 86, 304, 356
continuous nature of discrete-time system, 461
effects of poles and zeros on, 90, 463–464
finite word-length effects on, 472
from difference equations, 358
from pole-zero locations, 462–468
LTIC system, 85–92
LTID system, 457–468
periodic nature of discrete-time system, 461
frequency-reversal property, see reversal property
frequency sampling filters, 542–544
frequency sampling method FIR filters, 537
with windowing, 544
frequency scaling, 115
frequency-scaling property, see scaling property
frequency shifting, 57, 346–350
circular, 581
frequency-shifting property, see shifting property
frequency transformations, 114
lowpass-to-bandpass, 117–118
lowpass-to-bandstop, 118–120
lowpass-to-highpass, 116–117
lowpass-to-lowpass, 115–116
frequency warping, 494, 496
frequency-weighted least-squares FIR filters, 544–550
fun, 1–731
Index

fundamental band, 171, 224, 227, 335
signals outside the, 228
fundamental frequency, 34, 233
fundamental period, 21, 233
gain errors, 194
gate function, see unit gate function
generalized functions, 10, 335
generalized linear phase, 97, 360
Gibbs phenomenon, 43, 520
Goertzel’s algorithm, 600–603
efficient second-order realization of, 602
Gray code, 189
group delay, 95, 97–99, 360
half-wave symmetry, 80
Hamming window, 110, 520, 530
Hann window, 110, 520, 530
Heaviside cover-up method, 421
hieroglyphics, 187
highpass filters, 465, 501
ideal, 100, 362
impulse invariance method and, 374, 489
practical specification of, 112
restrictions of linear phase FIR, 514
transformation of lowpass to, see filter transformations
window method and, 533
Hilbert transformer, 95
homogeneity property, 26, 250
ideal delay, see delay, ideal
ideal differentiators, see differentiators, ideal
ideal filters, see filters, ideal
ideal integrators, see integrators, ideal
ideal interpolation, see interpolation, ideal
ideal linear phase systems, 95, 359, 360
identity systems, 257, 301, 446
images, 388
imaginary part, 16
imaginary signals, 16, 232
impulse function, see unit impulse function
impulse invariance method, 373, 374
filter design by the, 486–491
impact of sampling interval on the, 487–489
limitations of the, 489
table of pairs for the, 487
impulse response, 29, 86, 253, 254, 284
closed-form solution, 285–288
of interconnected systems, 300
of nonrecursive systems, 287
system behavior revealed by the, 312
transfer function connection to the, 85, 417
zero-state response computed using the, 29, 92, 253, 355
impulse sampling, 155–158
equivalence to point sampling, 366
infinite impulse response filters, 288, 485–507
bilinear transform design of, 491–507
digital bandpass, 504
digital bandstop, 506
digital highpass, 501
families of analog, 120–149
impulse invariance method design of, 486–491
realization of, 508
second-order section cascade of, 508
information theory, 187
initial conditions, 27, 250, 270, 438
internal stability and, 30, 256
unilateral z-transform and, 436
unilateral Laplace transform and, 73
initial value theorem, 435
inner product, 545
inputs, 25, 238
complex, 294
exponential, 30, 85, 303, 321, 357
multiple, 213, 293
sinusoidal, 30, 86, 314, 321, 458
instability, see unstable systems
instantaneous systems, 256
integration property
Fourier transform, 356
Fourier transform time, 59, 67
Laplace transform, 72
integrators
backward difference transform and digital, 492
digital, 243
ideal, 31, 89
trapezoidal approximation of, 244
interconnected systems, 300, 445
interpolated systems, 164, 219, 387–391
system response to, see zero-input response
internal stability, 30, 256
poles to determine, 32, 306, 444
relation to bounded-input bounded-output
stability, 307–309
interpolation, 164, 219, 387–391
bandlimited, see bandlimited interpolation
discrete-time Fourier transform obtained by
discrete Fourier transform, 567
first-order hold, 168
ideal, 164, 213, 380, 390
spectral, 183–184
zero-order hold, 167
interpolation filters, 219, 257, see also reconstruction filters
decimation filter combined with, 261
frequency response of ideal, 164, 389
impulse response of ideal, 164, 391
interpolation formula, 165, 213, 371
spectral, 184
interpolation function, see sinc function
interpolators, 257
block representation of, 258, 379
decimators in cascade with, 394–395
output of ideal, 391
intuitive insights into system behavior, 311–317
frequency response provides, 86–87, 93
poles and zeros provide, 32
inverse Chebyshev filters, 139–144
determination of order, 140
pole locations, 140
ripple parameter, 140
transfer function, 140
transformation to digital, 485–507
zero locations, 140
inverse discrete Fourier transform, see discrete Fourier transform, inverse
inverse discrete-time Fourier transform, see discrete-time Fourier transform, inverse
inverse Fourier transform, see Fourier transform, inverse
inverse Laplace transform, see Laplace transform, inverse
inverse systems, 301, 446
inverse z-transform, see z-transform, inverse
invertibility, 257
iterative solutions
to difference equations, 270
to impulse responses, 284
Kaiser window, 110–112, 520, 530
filter design using, 532
Kronecker delta function, 220
connection to the unit step function, 221
expansion represented using the, 222
properties of the, 220
sampling property, 220
L-ary digital signals, see digital signals, L-ary
Laplace transform, 31, 68–73
analysis equation, 69, 72
bilateral, 69
Fourier transform connection to the, 70
inverse, 69
properties of the, 72–73
region of convergence, 69
synthesis equation, 69, 72
table of pairs, 71
table of properties, 72
unilateral, 69–70, 72–73
z-transform connection to the, 410, 474–476
leakage, see spectral leakage
left half-plane, 12, 224
system stability and the, 32
left shift, 4, 214, 431
left-sided signals, 16, 69, 231, 414
Leibnitz, Gottfried Wilhelm, 188
linear convolution, see convolution
linear interpolation, 168, 206, 392
linear phase, 54, 95, 359
distortionless transmission and, 94, 359
generalized, see generalized linear phase
physical explanation of, 57, 345
linear phase FIR filters, 483, 511–515, 539, see also finite impulse response filters
realization of, 515
table of amplitude and phase responses, 513
table of restrictions, 514
table of types, 512
linear phase systems
ideal, 95, 359, 360
linear quantization, 193, see also quantization
linear systems, 26, 250
linear time-invariant systems, 25, 248, 290, see also continuous-time systems; discrete-time systems
linear time-variant systems, 28, 252, 290
linear vector spaces, 545
linearity, 26, 250
visualizing, 26, 251
linearity property
discrete Fourier transform, 570, 584
discrete-time Fourier transform, 343, 356, 584
Fourier series, 67
Fourier transform, 52, 67, 356
Laplace transform, 72
z-transform, 427, 434
lowpass filters, 465
ideal, 100, 362
impulse invariance method and, 489
practical specification of, 112
practical specification of FIR, 529
restrictions of linear phase FIR, 514
lowpass-to-bandpass filter transformations, 117
lowpass-to-bandstop filter transformations, 118
Index

lowpass-to-highpass filter transformations, 116
lowpass-to-lowpass filter transformations, 115
Maclaurin series, 426
magnitude response, 86, 94, 357, 458
conditions to be realizable, 101
effects of poles and zeros on, 90, 463–464
expressed in decibel scale, 86
magnitude spectrum
discrete Fourier transform, 562
discrete-time Fourier transform, 334
Fourier series, 34
Fourier transform, 46
main lobe, 104–112, 517–521, 525
widths of common window functions, 520
mapping, 224
marginal stability, 30, 256
poles to determine, 32, 307, 444, 445
MATLAB drill exercises
aliasing, 726
Bessel-Thomson filters, 663
bilinear transform, 708–710
block convolution, 727
Butterworth filters, 660, 661
Chebyshev filters, 661, 662, 708, 710
circular convolution, 725, 726
convolution, 686, 727
discrete Fourier transform, 719, 720, 725–727, 730
discrete-time Fourier series, 730
downsampling, 678
fractional sampling rate, 678
frequency response, 655, 656, 691, 693, 706, 707
frequency sampling method, 717
frequency-weighted least squares, 718
impulse response, 681, 691, 696
interpolation, 665, 671, 693, 694
inverse Chebyshev filters, 709
iterative solution of difference equations, 679
partial fraction expansions, 695–697, 700–704
plotting signals, 670, 674
pole/zero plots, 656, 661
stability, 704
upsampling, 671, 672, 678
window functions, 659
window method, 691, 712–715
zero-input response, 679, 700–702
zero-state response, 700–703
MATLAB examples
aliasing, 217, 224
apparent frequency, 229
bilinear transform, 494, 497, 502, 504, 506
block convolution, 595, 598
Butterworth filters, 123, 125, 126, 489, 494, 497, 504
Chebyshev filters, 133, 135, 137, 502, 506
circular convolution, 587
circular shifting, 581
decimation, 387
discrete Fourier transform, 566, 581, 591, 592, 595, 598, 610
discrete-time Fourier transform, 342
downsampling, 217
equiripple filters, 145
energy, 22
maximum passband attenuation, 112
maximum stopband gain, 112
memory, 245, 256, 448
memoryless systems, 256
method of residues, 420
minimum passband gain, 112
minimum phase systems, 32
minimum stopband attenuation, 112
mirror image polynomials, 514
missing codes, 195
mixed-radix fast Fourier transform, 610
modified partial fractions, 420
modulation
amplitude, 58
delta, 380
pulse-code, 186, 380
modulation property
discrete-time Fourier transform, 347–350
Fourier transform, 58
modulo-\(N\) operation, 560, 572–573
modulo-\(N\) reflection, 574
modulo-\(N\) shift, 572, 574–578
modulo operation, 174
monotonic exponentials, 12, 222
moving-average systems, 269, 325
\(\mu\)-law compression, 193
multiple-input, multiple-output systems, 213
multiple-input, single-output systems, 213
multiple inputs, 293
multiplication
discrete-time convolution and polynomial, 299
of a function by an impulse, 10, 220
scalar, 238, 447, 545
multiplication property, see convolution property
multirate systems, 216, 257
natural binary code, 186
natural modes, see characteristic modes
natural response, 317–321
natural sampling, 206
negative frequency, 36–37, 172
neper frequency, 12
noise, 25, 88, 192
aliasing and, 170, 172
quantization, see quantization error
non-anticipative systems, see causal systems
non-bandlimited signals, 105, 169, 171, 486
noncausal signals, 15, 231
noncausal systems, 29, 254
non-integer shift, 368–370
nonlinear quantization, 193
nonlinear systems, 27, 193, 250, 251
nonlinearity errors, 195
nonrecursive form, 239, 255, 273, 300
nonrecursive systems
impulse response of, 287
zero-input response of, 282
nonuniqueness, 226, 570, 571
norm, 545
notch filters, see bandstop filters
Nyquist interval, 156
Nyquist rate, 155–161, 168, 370
downsampling and the, 216
reasons to exceed, 201
Nyquist samples, 156, 171, 397
objective functions, 64
observability, 32, 309
odd symmetry, 18, 54, 232, 344
in Fourier analysis, 66
linear phase FIR filters with, 512
offset binary, 189
offset errors, 194
operator notation, 275–276
danger of treating algebraically, 276
order, 245
of difference equations, 245
orthogonality, 545
orthogonality principle, 545–547
Fourier series derived using the, 547
orthonormality, 547
outputs, 25, 238
complex, 294
exponential, 30, 85, 303, 321, 357
multiple, 213
sinusoidal, 30, 86, 314, 321, 458
overlap-and-add method, see block convolution
overlap-and-save method, see block convolution
Paley-Wiener criterion, 101, 112, 168
parallel converters, see flash converters
parallel realizations, 453
of frequency sampling filters, 542
performance of, 457
parallel systems, 300, 445
Parks-McClellan algorithm, 551
Parseval’s theorem
discrete Fourier transform, 583, 584
discrete-time Fourier transform, 355, 356, 584
Fourier series, 67
Fourier transform, 62, 67, 356
partial fraction expansions, see MATLAB examples, partial fraction expansions
partial fractions
modified, 420
passbands, 100, 101, 112, 362
specification of, 112, 529
peak-to-peak ripple, 130
Index

periodic convolution, see circular convolution
periodic replication, 21, 156, 161
circular representation and, 574
discrete Fourier transform and, 570
discrete-time Fourier transform from Fourier transform, 366
discrete-time Fourier transform fundamental band and, 340, 350
spectral sampling produces time-domain, 181
time-domain sampling results in frequency-domain, 374
periodic signals, 21, 233
continuous-time systems and, 32–33
discrete Fourier transform and, 570, 578
discrete-time Fourier series and, 612
Fourier series and, 33
Fourier transform and, 49
permutation matrix, 623
phase delay, 361
phase response, 86, 94, 357, 458
effects of poles and zeros on, 90, 463–464
principal value of the, 362
phase spectrum
discrete Fourier transform, 562
discrete-time Fourier transform, 334
Fourier series, 34
Fourier transform, 46
principal value of the, 55
physical systems, see causal systems
pick-off nodes, 238, 452
picket fence effect, 563
Pingala, 188
point sampling, 155
equivalence to impulse sampling, 366
point-wise convergence, 41
Poisson sum formula, 210
pole-zero plots, 89–92, 462–468, 508–510
poles, 32, 448
complex, 280, 508
controlling gain by, 32, 149, 463–464
effect on frequency response, 90, 463–464
finite word-length effects on, 469
realization of repeated, 454
repeated, 279, 421, 487
system stability and, 32, 307, 444
system stability and repeated, 32, 307, 444
polynomial multiplication by convolution, 299
polynomials
anti-mirror image, 514
mirror image, 514
polyphase decomposition, 604
power
computed as an inner product, 547
frequency-domain representation of, 65
of continuous-time signals, 23
of discrete-time signals, 236
power series expansion, 425
power signals
continuous-time, 24
discrete-time, 236
power spectral density, 65
practical filters, 100–113, 362–364
analog, 120, 149
digital, 485–552
predictive first-order hold, 206
prewarping, 497–501
principal values
phase using, 55, 362
prototype filters, 114, 501
pulse-code modulation, 186, 380
pulse dispersion, 315
pulse sampling, 161–164
quadratic factors
method of, 422
quadratic formula, 127, 136
quadrature systems, 404
quantization, 185
asymmetric, 189, 190
linear, 193
nonlinear, 193
rounding, 189, 190
symmetric, 189, 190
truncating, 189, 190
quantization errors, 189, 201–202
quantization levels, 185
quantization noise, see quantization error
radix-2 fast Fourier transform, 610
ramp invariance method, 554
random signals, 25
rational functions, 420
real part, 16
real signals, 16, 232
real systems, 85
complex roots of, 280
realizable filters, see practical filters
reconstruction
practical difficulties in, 168–176
reconstruction filters, 164–176, 199–201
rectangle function, see unit gate function
rectangular window, 104–110, 517–521, 530
optimality of the, 522
recursion, 270
recursive form, 239, 273
reflection, see reversal property; time reversal
region of convergence, 69, 411–415
for finite-length signals, 414
poles never found within the, 412
unilateral transforms and, 70, 416
region of existence, see region of convergence
Remez exchange algorithm, 551
repeated poles, see poles, repeated
repeated roots, 279, see also poles, repeated
resampling
analog, 393
digital, 257, 379–395
resonance, 32, 283, 311, 315–317
reversal, see reversal property; time reversal
reversal property
discrete Fourier transform, 580, 584
discrete-time Fourier transform, 344, 356, 584
Fourier series, 67
Fourier transform, 53, 67, 356
Laplace transform, 72
z-transform, 428, 434
reverse Bessel polynomials, 148

table of, 148
right half-plane, 12, 224
right shift, 4, 214, 430
right-sided signals, 16, 69, 231, 414
ripple parameters, 112, 529, 536
rise time, 314
rolloff, 107, 519
roots
characteristic, see characteristic roots
complex, 280
repeated, see repeated roots
transfer function, 31, 89, 462
rounding quantization, see quantization, rounding
sample-and-hold, 196
sampled continuous-time sinusoids, 458–461
sampling, 155–164
first-order, 178
flat-top, 206
impulse, 10, 155–158, 366
natural, 206
nonuniform, 177
Nyquist rate, see Nyquist rate of bandpass signals, 176–181
point, 155, 366
practical, 161–164
practical difficulties in, 168–176
pulse, 161–164
second-order, 177
signal reconstruction and, 164–176
spectral, 181–183, 537, 544
uniform, 155
sampling frequency, see sampling rate
sampling interval, 155
sampling property
continuous-time, 10
discrete-time, 220, 289
sampling rate, 155, see also Nyquist rate
conversion of, 216, 257, 394
permissible for bandpass signals, 176
spectral, 183
sampling rates
permissible for bandpass signals, 181
sampling theorem, 155–161, 235
spectral, 181–183
saturation errors, 189
savings account example, 240
scalar multiplication, 238, 447, 545
scaling
continuous-time signals, 5
discrete-time signals, 216
shifting combined with, 6
scaling property, 26, 250, see also time scaling
discrete-time Fourier transform lack of the, 344
Fourier series lack of the, 68
Fourier transform, 53, 67, 381
Laplace transform, 72
z-domain, 432, 434
z-transform lack of time-domain, 428
second-order sections, 447–457
cascade of, 508
sequences, see discrete-time signals
series expansion, see power series expansion
shifting
continuous-time signals, 4
discrete-time signals, 214
reversal combined with, 215
scaling combined with, 6
shifting property, see also time shifting
convolution, 292
discrete Fourier transform circular, 580, 584
discrete-time Fourier transform, 345–350, 356, 584
Fourier series, 67
Fourier transform, 54, 57, 67, 356
Laplace transform, 72
z-transform time-domain, 428, 434
Index

side lobes, 104–112, 517–521, 525
sifting property, see also sampling property
continuous-time, 10, 11
discrete-time, 220, 289
signal distortion, 96
signal energy
computed as an inner product, 545
continuous-time, 21
discrete-time, 236
essential bandwidth and, 63
frequency-domain representation of, 61, 354, 582
signal power
computed as an inner product, 547
continuous-time, 23
discrete-time, 236
frequency-domain representation of, 65
signal reconstruction, 164–176, see also interpolation
signal to noise power ratio, 25
signal transmission, 92–99, 359–362
signals, 2–25, 212–238
analog, see analog signals
anti-causal, see anti-causal signals
aperiodic, see aperiodic signals
approximating with basis functions, 545–550
audio, see audio signals
bandlimited, see bandlimited signals
categorization of, 3–4
causal, see causal signals
classifications of, 15–25, 231–238
conjugate-antisymmetric, see conjugate antisymmetry
conjugate-symmetric, see conjugate symmetry
continuous-time, see continuous-time signals
defined, 2
deterministic, see deterministic signals
digital, see digital signals
discrete-time, see discrete-time signals
energy, see energy signals
even, see even symmetry
everlasting, see everlasting signals; two-sided signals
finite-duration, see finite-duration signals
imaginary, see imaginary signals
left-sided, see left-sided signals
models of useful, 7–15, 219–230
modulation, 58
non-bandlimited, see non-bandlimited signals
noncausal, see noncausal signals
odd, see odd symmetry
orthogonal, see orthogonality
orthonormal, see orthonormality
periodic, see periodic signals
power, see power signals
probabilistic, see random signals
random, see random signals
real, see real signals
size of, see energy; power
useful operations, 214–219
useful operations on the independent variable of, 4–7
video, see video signals
signals and systems
elementary structures, 1
sinc function, 13–15
interpolation using the, 165
spectral interpolation using the, 184
single-input, multiple-output systems, 213
single-input, single-output systems, 212
sinusoidal inputs and outputs, 86, 314, 458
sinusoidal steady-state response, 85, 458
sinusoids, 12, 222, 225–226, see also exponential functions
aliasing in, 173–176, 226–230
apparent frequency of, 174
frequency response and, 85–86
periodicity of discrete-time, 233–236
relationship between exponential functions and, 12
sampled continuous-time, 226, 458–461
sliding-tape method, 296–298
spectra, 331
discrete Fourier transform, 560
discrete-time Fourier transform, 334
Fourier series, 34
Fourier transform, 46
width of periodic, 354
spectral density
energy, 62, 355
power, 65
spectral folding, 170, see also aliasing
spectral images, 388
spectral interpolation, 183–184
spectral leakage, 104–112, 517–521, 525, 539
remedy for, 109
spectral resolution, 109
spectral sampling, 181–183, 537, 544
spectral sampling method FIR filters, 537
with windowing, 544
spectral sampling rate, 183
spectral sampling theorem, 181–183
spectral smearing, see spectral spreading
spectral spreading, 104–112, 517–521, 525
remedy for, 109
spectral resolution and, 109
stability, 29, 256, 305–311, 444–445
bounded-input bounded-output, see
bounded-input bounded-output stability
external, see bounded-input bounded-output stability
internal, see internal stability
marginal, see marginal stability
poles to determine, 32, 307, 444
static errors, 194–196
static systems, 256
steady-state response, 85, 458
step function, see unit step function
step invariance method, 554
stopband rolloff, 107
stopbands, 100, 101, 112, 362
specification of, 112, 529
sub-Nyquist sampling, 171, 378
bandpass signals and, 176–181
successive approximation converters, 197
sums
table of, 290
superposition property, 26, 250, 293
zero-state response and the, 28, 252
symbols, 185
M-ary, 188
symmetric quantization, see quantization, symmetric
symmetry
conjugate, see conjugate symmetry
conjugate anti-, see conjugate antisymmetry
relations of Fourier analysis, 66
synthesis equation
discrete Fourier transform, 561, 584, 600
discrete-time Fourier series, 612
discrete-time Fourier transform, 332, 338, 356, 584
Fourier series, 34, 67
Fourier transform, 45, 67, 356
Laplace transform, 69, 72
z-transform, 397, 410, 434
system poles, see poles
system realizations, 238, 445–457
cascade, see cascade realizations
direct form, see direct form realizations
finite impulse response, 455
of complex-conjugate poles, 454
of repeated poles, 454
parallel, see parallel realizations
performance differences in, 457
system zeros, see zeros
systems, 25, 238–248
accumulator, see accumulator
backward difference, see backward difference systems
cascade, see cascade; cascade realizations
causal, see causal systems
continuous-time, see continuous-time systems
discrete-time, see discrete-time systems
dynamic, see dynamic systems
feedback, see feedback systems
forward difference, see forward difference systems
frequency response of, see frequency response
identity, see identity systems
instantaneous, see instantaneous systems
interconnected, see interconnected systems
inverse, see inverse systems
linear, see linear systems
magnitude response of, see magnitude response
minimum phase, see minimum phase systems
multiple-input multiple-output, see multiple-input multiple-output systems
multiple-input single-output, see multiple-input single-output systems
noncausal, see noncausal systems
nonlinear, see nonlinear systems
parallel, see parallel systems; parallel realizations
phase response of, see phase response
properties of, 25–30, 248–257
single-input multiple-output, see single-input multiple-output systems
single-input single-output, see single-input single-output systems
stable, see stability
time-invariant, see time-invariant systems
time-variant, see time-variant systems
tables
collection of useful, 640–645
Tacoma Narrows Bridge failure, 317
tapered windows, 109–110, 517–521
tapped delay lines, 455, 515
Taylor series, 426
time constant, 312–315
relationship between bandwidth and, 315
time convolution, see convolution; convolution property; convolution sum
time delay, see time shifting
variation with frequency, 95
time differentiation, see differentiation property
time-domain analysis
of continuous-time systems, 25–30
of discrete-time systems, 270–323
of interpolation, 164–168
time-frequency duality, see duality
time-integration, see integration property
time invariance, 27, 248
visualizing, 28, 249
time-invariant systems, 27, 248
linear, see linear time-invariant systems
time reversal
continuous-time, 5
discrete-time, 215
shifting combined with, 215
time-reversal property, see reversal property
time scaling, see also scaling property
continuous-time, 5, 53
discrete-time, 216–219
time shifting, see also shifting property
continuous-time, 4
discrete-time, 214
time-variant systems, 28, 248–250, 252, 290
timelimited signals, see finite-duration signals
timing jitter, 195
Toepplitz matrix, 549
total response
of continuous-time systems, 27
of discrete-time systems, 250, 304, 317
transfer functions
block diagram realizations of, 445–457
discrete-time system realization of
continuous-time system, 486
of continuous-time systems, 31
of discrete-time systems, 303, 439–444
roots of, 31, 89, 462
transformations of filters, see filter transformations
transition bands, 107, 112, 530
multiple, 112
transposed realizations, 451–453
canonical direct form, 451
direct form I, 453
direct form II, 451
transversal filters, 455, 515
trapezoidal rule
bilinear transform and the, 492
triangle function, see unit triangle function
triangular window, 104–110, 520
trigonometric Fourier series, 37, see also Fourier series
truncating quantization, see quantization, truncating
Tukey, J. W., 603
twiddle factor, 604
two’s complement, 189
two-sided signals, 16, 231, 414
uncontrollable systems, 309
undersampling, see sub-Nyquist sampling
undetermined coefficients
method of, 318
uniform sampling, 155
uniformly convergent series, 41
unilateral Laplace transform, see Laplace transform, unilateral
unilateral z-transform, see z-transform, unilateral
uniqueness
discrete Fourier transform and, 569–572
unit circle, 223, 463
unit delay, 275
transfer function of the, 448
unit gate function, 8
unit impulse function
continuous-time, see Dirac delta function
discrete-time, see Kronecker delta function
unit impulse response, see impulse response
unit impulse train, 40, 157
unit step function
connection to the Dirac delta function, 10
connection to the Kronecker delta function, 221
continuous-time, 7
difference between continuous-time and discrete-time, 231
discontinuity of the continuous-time, 7
discrete-time, 219
unit triangle function, 8
unobservable systems, 309
unstable systems, 30, 256, 306, 307, see also stability
pole locations and, 221
upsampling, 218–219, 344, 380
block representation of, 257, 379
fractional sampling rate conversion and, 394
frequency-domain perspective of, 379, 387–391
Index

time-domain perspective of, 391

vector spaces, 545

vectors

 - basis, see basis vectors
 - error, 546
 - orthogonality principle demonstrated using, 547

video signals, 96

warping, see also prewarping

 - frequency, 494, 496

weighting function

 - frequency, 548

width property

 - convolution integral, 104
 - convolution sum, 292

window functions, 104–112

 - adjustable, 521
 - Blackman, see Blackman window
 - choosing, 110
 - Hamming, see Hamming window
 - Hann, see Hann window
 - impairments caused by, 104–105
 - Kaiser, see Kaiser window
 - rectangular, see rectangular window
 - table of, 110, 520
 - table of filtering characteristics, 530
 - triangular, see triangular window

window method FIR filters, 521–522, 533–536

 - achieving given specifications with, 529–530
 - examples of, 523–529
 - Kaiser window and, 532
 - suboptimality of, 536

window operation, 104

z-domain scaling property, 432

z-transform, 395–397, 410–477

 - analysis equation, 397, 410, 434
 - bilateral, 410
 - difference equations solved using the, 436–445
 - direct, 411
 - discrete-time Fourier transform connection to the, 418
 - existence of the, 413
 - final value theorem, 435
 - initial value theorem, 435
 - inverse, 411, 419–427
 - inverse by power series expansion, 425
 - Laplace transform connection to the, 474–476
 - linearity of the, 414

 - properties of the, 427–436
 - region of convergence, 411–415
 - synthesis equation, 397, 410, 434
 - table of pairs, 418
 - table of properties, 434
 - unilateral, 416–417, 420–423, 434, 436
 - zero-input response by the, 438
 - zero-state response by, 439–444
 - zero-state response by the, 438

zero-input response

 - insights into the, 282–283
 - iterative solution, 271
 - of continuous-time systems, 27
 - of discrete-time systems, 250, 277
 - of nonrecursive systems, 282
 - z-transform and the, 438

zero-order hold, 167

 - distortion from, 200

zero padding, 563–565

 - circular convolution and, 586

zero state, 27, 250

zero-state response

 - convolution and the, 288
 - iterative solution, 272
 - of continuous-time systems, 27, 28
 - of discrete-time systems, 250, 252
 - transfer function and the, 439–444
 - z-transform and the, 438

zeros, 32, 448

 - complex, 508
 - controlling gain by, 32, 149, 463–464
 - effect on frequency response, 90, 463–464
 - finite word-length effects on, 469